Epistemic Tools, Instruments and Infrastructure in Professional Knowledge Work and Learning

  • Lina Markauskaite
  • Peter Goodyear
Part of the Professional and Practice-based Learning book series (PPBL, volume 14)


In this chapter, our attention shifts from inscriptions and epistemic artefacts to the sets of tools and infrastructures in which such artefacts are produced. In particular, we use ideas about instrumental genesis to examine ways in which the qualities of tools and other artefacts combine with schemes for their use. We describe professional epistemic infrastructures as the basic material, symbolic and organisational structures that underpin various knowledge practices. The chapter reviews the status and functioning of tools in epistemic work and forges connections with schemes for their use – culturally shared but individually customised epistemic games. A key theme in this chapter concerns the dynamism of epistemic work – our analyses of passages of professional activity reveal rapid shifts back and forth between different assemblages of tools and different forms of knowledge and ways of knowing. Different intrinsic and extrinsic properties of the tools that constitute professional epistemic infrastructure have strong implications of how professional work is done and how knowledge and skills for such work can be taught and learnt.


Tools Instruments Instrumental genesis Epistemic infrastructure Assemblage 


  1. Baber, C. (2006). Cognitive aspects of tool use. Applied Ergonomics, 37(1), 3–15.CrossRefGoogle Scholar
  2. Beck, S. R., Apperly, I. A., Chappell, J., Guthrie, C., & Cutting, N. (2011). Making tools isn’t child’s play. Cognition, 119(2), 301–306.CrossRefGoogle Scholar
  3. Bereiter, C. (1997). Situated cognition and how to overcome it. In D. Kirshner & J. A. Whitson (Eds.), Situated cognition: Social, semiotic, and psychological perspectives (pp. 281–300). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  4. Bereiter, C. (2002a). Design research for sustained innovation. Cognitive Studies: Bulletin of the Japanese Cognitive Science Society, 9(3), 321–327.Google Scholar
  5. Bereiter, C. (2002b). Education and mind in the knowledge age. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  6. Bowker, G. C., & Star, S. L. (1999). Sorting things out: Classification and its consequences. Cambridge, MA: MIT Press.Google Scholar
  7. Butler, S. (1912). The note-books of Samuel Butler. London: William Brendon and Son.Google Scholar
  8. Clarke, A. E., & Fujimura, J. H. (Eds.). (1992). The right tools for the job: At work in twentieth-century life sciences. Princeton, NJ: Princeton University Press.Google Scholar
  9. Collins, A. (2011). A study of expert theory formation: The role of different model types and domain frameworks. In M. S. Khine & I. M. Saleh (Eds.), Models and modeling (pp. 23–40). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  10. Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies to guide inquiry. Educational Psychologist, 28(1), 25–42.CrossRefGoogle Scholar
  11. Cowan, R., David, P., & Foray, D. (2000). The explicit economics of knowledge codification and tacitness. Industrial and Corporate Change, 9(2), 211–253. doi: 10.1093/icc/9.2.211.CrossRefGoogle Scholar
  12. Cutting, N., Apperly, I. A., & Beck, S. R. (2011). Why do children lack the flexibility to innovate tools? Journal of Experimental Child Psychology, 109(4), 497–511.CrossRefGoogle Scholar
  13. de Souza, C. S. (2005). The semiotic engineering of human-computer interaction. Cambridge: MIT Press.Google Scholar
  14. Derry, S. J., Schunn, C. D., & Gernsbacher, M. A. (Eds.). (2005). Interdisciplinary collaboration: An emerging cognitive science. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  15. diSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293–331.CrossRefGoogle Scholar
  16. Edwards, P. N., Jackson, S. J., Bowker, G. C., & Knobel, C. P. (2007). Understanding infrastructure: Dynamics, tensions, and design. Ann Arbor, MI: DeepBlue.Google Scholar
  17. Engeström, Y., & Middleton, D. (Eds.). (1996). Cognition and communication at work. Cambridge, NY: Cambridge University Press.Google Scholar
  18. Fenwick, T. (2012). Matterings of knowing and doing: Sociomaterial approaches to understanding practice. In P. Hager, A. Lee, & A. Reich (Eds.), Learning practice. Dordrecht, The Netherlands: Springer.Google Scholar
  19. Glick, J. (1995). Intellectual and manual labor: Implications for developmental theory. In L. Martin, K. Nelson, & E. Tobach (Eds.), Sociocultural psychology: Theory and practice of doing and knowing (pp. 357–382). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  20. Goodwin, C. (1994). Professional vision. American Anthropologist, 96(3), 606–633.CrossRefGoogle Scholar
  21. Goodwin, C. (1997). The blackness of black: Color categories as situated practice. In L. B. Resnick, R. Säljö, C. Pontecorvo, & B. Burge (Eds.), Discourse, tools and reasoning: Essays on situated cognition (pp. 111–140). Berlin, Germany: Springer.CrossRefGoogle Scholar
  22. Goodwin, C. (2005). Seeing in depth. In S. J. Derry, C. D. Schunn, & M. A. Gernsbacher (Eds.), Interdisciplinary collaboration: An emerging cognitive science (pp. 85–121). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  23. Greeno, J. G., & Hall, R. P. (1997). Practicing representation: Learning with and about representational forms. Phi Delta Kappan, 78, 361–367.Google Scholar
  24. Griesemer, J. R. (1992). The role of instruments in the generative analysis of science. In A. E. Clarke & J. H. Fujimura (Eds.), The right tools for the job: At work in twentieth-century life sciences (pp. 47–76). Princeton, NJ: Princeton University Press.Google Scholar
  25. Håkanson, L. (2007). Creating knowledge: The power and logic of articulation. Industrial and Corporate Change, 16(1), 51–88.CrossRefGoogle Scholar
  26. Henning, P. H. (2004). Everyday cognition and situated action. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (2nd ed., pp. 143–168). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  27. Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.Google Scholar
  28. Ingold, T. (2011). Being alive: Essays on movement, knowledge and description. Oxon, UK: Routledge.Google Scholar
  29. Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78.CrossRefGoogle Scholar
  30. Kant, I. (1964). Werke VI: schriften zur anthropologie, geschichtsphilosophie, politik und padagogik. [works 6: Writings on anthropology, philosophy of history, politics and pedagogy]. Wiesbaden, Germany: Insel Verlag.Google Scholar
  31. Keller, C. M., & Keller, J. D. (1996). Cognition and tool use: The blacksmith at work. Cambridge, UK: Cambridge University Press.Google Scholar
  32. Knorr Cetina, K. (1999). Epistemic cultures: How the sciences make knowledge. Cambridge, MA: Harvard University Press.Google Scholar
  33. Knorr Cetina, K. (2001). Objectual practice. In T. R. Schatzki, K. Knorr Cetina, & E. V. Savigny (Eds.), The practice turn in contemporary theory (pp. 175–188). London: Routledge.Google Scholar
  34. Kuhn, T. S. (1981). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  35. Lampland, M., & Star, S. L. (Eds.). (2009). Standards and their stories: How quantifying, classifying, and formalizing practices shape everyday life. London: Cornell University Press.Google Scholar
  36. Land, R., Meyer, J., & Smith, J. B. (Eds.). (2008). Threshold concepts within the disciplines. Rotterdam, The Netherlands: Sense.Google Scholar
  37. Menz, M. M., Blangero, A., Kunze, D., & Binkofski, F. (2010). Got it! understanding the concept of a tool. NeuroImage, 51(4), 1438–1444.CrossRefGoogle Scholar
  38. Meyer, J. H. F., & Land, R. (Eds.). (2006). Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge. London: Routledge.Google Scholar
  39. Miettinen, R., & Virkkunen, J. (2005). Epistemic objects, artefacts and organizational change. Organization, 12(3), 437–456.CrossRefGoogle Scholar
  40. Nersessian, N. J. (2005). Interpreting scientific and engineering practices: Integrating the cognitive, social, and cultural dimensions. In M. E. Gorman, R. D. Tweney, D. C. Gooding, & A. P. Kincannon (Eds.), Scientific and technological thinking (pp. 17–56). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  41. Nersessian, N. J. (2006). The cognitive-cultural systems of the research laboratory. Organization Studies, 27(1), 125–145.CrossRefGoogle Scholar
  42. Norman, D. A. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction (pp. 17–38). Cambridge, UK: Cambridge University Press.Google Scholar
  43. Olson, D. R. (1994). The world on paper: The conceptual and cognitive implications of writing and reading. Cambridge, UK: Cambridge University Press.Google Scholar
  44. Orlikowski, W. J. (2007). Sociomaterial practices: Exploring technology at work. Organization Studies, 28(9), 1435–1448.CrossRefGoogle Scholar
  45. Perkins, D. N. (1997). Epistemic games. International Journal of Educational Research, 27(1), 49–61.CrossRefGoogle Scholar
  46. Perkins, D. (2006). Constructivism and troublesome knowledge. In J. H. F. Meyer & R. Land (Eds.), Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge (pp. 33–47). London: Routledge.Google Scholar
  47. Perkins, D. N., & Salomon, G. (1989). Are cognitive skills context-bound? Educational Researcher, 18(1), 16–25. doi: 10.3102/0013189x018001016.CrossRefGoogle Scholar
  48. Rabardel, P., & Beguin, P. (2005). Instrument mediated activity: From subject development to anthropocentric design. Theoretical Issues in Ergonomics Science, 6(5), 429–461. doi: 10.1080/14639220500078179.CrossRefGoogle Scholar
  49. Rheinberger, H. (1997). Toward a history of epistemic things: Synthesizing proteins in the test tube. Stanford, CA: Stanford University Press.Google Scholar
  50. Ribes, D., & Finholt, T. A. (2009). The long now of infrastructure: Articulating tensions in development. Journal for the Association of Information Systems: Special Issue on Infrastructures, 10(5), 375–398.Google Scholar
  51. Ritella, G., & Hakkarainen, K. (2012). Instrumental genesis in technology-mediated learning: From double stimulation to expansive knowledge practices. International Journal of Computer-Supported Collaborative Learning, 7(2), 239–258. doi: 10.1007/s11412-012-9144-1.CrossRefGoogle Scholar
  52. Roth, W.-M. (2010). Learning in praxis, learning for praxis. In S. Billett (Ed.), Learning through practice: Models, traditions, orientations and approaches (pp. 21–36). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  53. Roth, W. M., & McGinn, M. K. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35–59.CrossRefGoogle Scholar
  54. Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in scientific inquiry: A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499–525.CrossRefGoogle Scholar
  55. Säljö, R. (1995). Mental and physical artifacts in cognitive practices. In P. Reimann & H. Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science (pp. 83–95). London: Pergamon Press.Google Scholar
  56. Sattler, J. M., & Hoge, R. D. (2006). Assessment of children: Behavioural, social and clinical foundations (5th ed.). San Diego, CA: Sattler.Google Scholar
  57. Schatzki, T. R. (2001). Introduction: Practice theory. In T. R. Schatzki, K. Knorr Cetina, & E. V. Savigny (Eds.), The practice turn in contemporary theory (pp. 1–14). London: Routledge.Google Scholar
  58. Schwab, J. J. (1962). The concept of the structure of a discipline. Educational Record, 43, 197–205.Google Scholar
  59. Scribner, S. (1997). Mind and social practice: Selected writings of Sylvia Scribner. Cambridge, MA: Cambridge University Press.Google Scholar
  60. Seymour, W. D. (1966). Industrial skills. London: Pitman.Google Scholar
  61. Stahl, G. (2012). Cognizing mediating: Unpacking the entanglement of artifacts with collective minds. International Journal of Computer-Supported Collaborative Learning, 7(2), 187–191. doi: 10.1007/s11412-012-9148-x.CrossRefGoogle Scholar
  62. Star, S. L. (1989). The structure of ill-structured solutions: Boundary objects and heterogeneous distributed problem solving. In L. Gasser & M. N. Huhns (Eds.), Distributed artificial intelligence (Vol. 2, pp. 37–54). Pitman, CA: Morgan Kaufmann.CrossRefGoogle Scholar
  63. Star, S. L., & Ruhleder, K. (1996). Steps toward an ecology of infrastructure: Design and access for large information spaces. Information Systems Research, 7(1), 111–134.CrossRefGoogle Scholar
  64. Star, S. L., & Strauss, A. (1999). Layers of silence, arenas of voice: The ecology of visible and invisible work. Computer Supported Cooperative Work (CSCW), 8(1), 9–30.CrossRefGoogle Scholar
  65. Suchman, L. (2007). Human-machine reconfigurations: Plans and situated actions. Cambridge, UK: Cambridge University Press.Google Scholar
  66. Toulmin, S. (1953). The philosophy of science: An introduction. London: Hutchinson’s University Library.Google Scholar
  67. Turnbull, D. (2000). Masons, tricksters and cartographers: Comparative studies in the sociology of scientific and indigenous knowledge. Abingdon, OX: RoutledgeGoogle Scholar
  68. Vygotsky, L. S. (1930). The Instrumental method in psychology. Text of a talk given in 1930 at the Krupskaya Academy of Communist Education. Retrieved from
  69. Vygotsky, L. S. (1986). Thought and language (2 Revisedth ed.). Cambridge, MA: MIT Press.Google Scholar
  70. Weick, K. E. (1995). Sensemaking in organizations. Thousand Oaks, CA: Sage.Google Scholar
  71. Whitehead, A. N. (1925/1948). Science and the modern world (Mentor ed.). New York: New American Library.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Lina Markauskaite
    • 1
  • Peter Goodyear
    • 1
  1. 1.Centre for Research on Learning and Innovation (CRLI), Faculty of Education & Social WorkThe University of SydneySydneyAustralia

Personalised recommendations