Contexts as Learning Catalysts for Students and Teachers: Approaches and Exemplary Results from the Projects Chemie im Kontext and CHEMOL

  • Ilka Parchmann
  • Nina Dunker
  • Wiebke Endres


In this chapter, Parchmann, Dunker, and Endres look at the value of the contexts as cthemistry learning catalysts for students and teachers. They presented two approaches; Chemie im Kontext and CHEMOL. Authors emphasized that the teaching tradition in German chemistry classrooms uses experiments as stimuli for chemistry learning. However, these experiments were often not connected to the experiences of students and to relevant topics. The projects Chemie im Kontext for secondary level and CHEMOL for primary level therefore use contexts from the students’ daily life or contexts connected to important socio-scientific issues to raise questions which can then be researched by students. The active learning of the students is supported by scaffolding material and a variety of teaching and learning methods, involving different roles for teachers and students. Authors also presented that active learning did not take place only in classroom but also within the meetings of teachers of different schools and chemistry educators from university. The chapter describes the structure of both projects, gives two examples of teaching and learning processes, and discusses results from qualitative and quantitative research studies.


Active Learning Elementary School Student Combustible Material Thematic Unit Didactical Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Demuth, R., Gräsel, C., Parchmann, I., & Ralle, B. (Eds.). (2008). Chemie im Kontext – Von der Innovation zur nachhaltigen Verbreitung eines Unterrichtskonzepts [Chemie im Kontext – From an innovation to a sustainable dissemination of a teaching and learning approach]. Münster, New York, München, Berlin: Waxmann.Google Scholar
  2. Euler, M. (2002). Lernen durch Experimentieren [Learning with experiments]. In U. Ringelband, M. Prenzel, & M. Euler (Eds.), Lernort Labor. Initiativen zur naturwissenschaftlichen Bildung zwischen Schule, Forschung und Wirtschaft. Bericht über einen Workshop IPN (pp. 13–42). Kiel.Google Scholar
  3. Kandt, W. (2008). Offenes Experimentieren im Anfangsunterricht. Band 5. In I. Parchmann, C. Hößle, M. Komorek, & K. Wloka (Eds.), Studien zur Kontextorientierung im naturwissenschaftlichen Unterricht. Tönning, Lübeck und Marburg: Der Andere Verlag.Google Scholar
  4. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.CrossRefGoogle Scholar
  5. Leerhoff, G., & Eilks, I. (2002). Schülerinnen und Schüler erarbeiten sich den Atombau - Erfahrungen mit einem Gruppenpuzzle. Praxis Schule 510, 13(5), 49–56.Google Scholar
  6. Leerhoff, G., Möllering, J., & Eilks, I. (2000). Lernzirkel zur Behandlung der Stoffeigenschaften. Der Mathematische und Naturwissenschaftliche Unterricht, 53(4), 231–234.Google Scholar
  7. Lunetta, V. N. (1998). The school science laboratory: Historical perspectives and concepts for contemporary teaching. In B. J. Fraser & K. G. Tobin (Eds.), International Handbook of Science Education (pp. 249–262). Dordrecht: Kluwer.CrossRefGoogle Scholar
  8. McComas, W. F. (Ed.). (2000). The nature of science in science education: Rationales and strategies (pp. 83–126). The Netherlands: Kluwer Academic Publishers.Google Scholar
  9. Nentwig, P., Parchmann, I., Gräsel, C., Ralle, B., & Demuth, R. (2007). Chemie im Kontext – A New Approach to Teaching Chemistry; Its Principles and First Evaluation Data. Journal of Chemical Education (JChemEd), 84(9), 1439–1444.CrossRefGoogle Scholar
  10. Parchmann, I., Gräsel, C., Baer, A., Nentwig, P., Demuth, R., & Ralle, B. (2006). Chemie im Kontext – A symbiotic implementation of a context-based teaching and learning approach. International Journal of Science Education (IJSE), 28(9), 1041–1062.CrossRefGoogle Scholar
  11. Prenzel, M., Artelt, C., Baumert, J., Blum, W., Hammann, M., Klieme, E., et al. (Eds.). (2007). PISA 2006 – Die Ergebnisse der dritten internationalen Vergleichsstudie [PISA 2006 – Results of the third international comparative study]. Münster: Waxmann.Google Scholar
  12. Steffensky, M., & Parchmann, I. (2007). The project CHEMOL: Science education for children – teacher education for students! Chemistry Education: Research and Practise (CERP), 8(2), 120–129.Google Scholar
  13. von Aufschnaiter, C., & Riemeier, T. (2005). Experimente im naturwissenschaftlichen Unterricht [Experiments in science classroom education]. Lernchancen, 47(8), 6–10.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  1. 1.IPNKielGermany
  2. 2.University of BremenBremenGermany
  3. 3.University of OldenburgOldenburgGermany

Personalised recommendations