Skip to main content

Regulation of ER Stress Responses by microRNAs

  • Chapter
  • First Online:

Abstract

MicroRNAs (miRNAs) have been shown to be critically involved in control of cell survival and cell death decisions. The main function of miRNAs is to direct posttranscriptional regulation of gene expression, typically by binding to 3’ UTR of cognate mRNAs and inhibiting their translation and/or stability. Hundreds of miRNAs, many of them evolutionarily conserved, have been identified in mammals, but their physiological functions are just beginning to be elucidated. Endoplasmic Reticulum (ER) stress has been associated with a wide range of diseases, including neurodegeneration, stroke, bipolar disorder, cardiac disease, cancer and diabetes. Although the Unfolded Protein Response (UPR) is primarily pro-survival, in the event of prolonged or severe ER stress that is not resolved, the UPR switches to initiation of apoptosis. Here we have discussed the role of miRNAs in determining cell fate during conditions of ER stress. This chapter will provide novel insights into regulation of UPR signaling by miRNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AGO:

Argonaute

ATF4/6:

Activating Transcription Factor 4/6

Bim:

Bcl2-interacting mediator of cell death

BMPs:

Bone Morphogenetic Proteins

CHOP:

C/EBP Homologous Protein

CLL:

chronic lymphocytic leukemia

CRE:

ATF/cAMP response elements

DGCR8:

DiGeorge Critical Region 8

DICER:

Ribonuclease Type III

DNMT:

DNA Methyl Transferase

DROSHA:

Ribonuclease Type III

ds:

double stranded

eIF2α:

eukaryotic Initiation Factor-2α

eIF4E:

eukaryotic Initiation Factor 4E

ER:

Endoplasmic Reticulum

ER-α:

Estrogen Receptor α

ERAD:

ER Associated Degradation

ERK:

Extracellular signal Regulated Kinase

ERSE:

ER stress responsive elements

HDAC:

histone deacetylase

hnRNP:

heterogeneous nuclear ribonucleoproteins

hp-RNAs:

long hairpin RNAs

IRE1:

Inositol Requiring Enzyme 1

M7G:

7-methylguanylate

MAPK:

Mitogen Activated Protein Kinase

miRNA:

microRNA

mRNA:

messenger RNA

PACT:

Protein kinase R-activating protein

PBs:

P-bodies

PERK:

double stranded RNA-activated protein kinase (PKR) –like ER Kinase

pre-miRNA:

precursor-miRNA

pri-miRNA:

primary miRNA transcript

RISC:

RNA-induced silencing complex

SDN-1:

small RNA degrading nuclease

SINEs:

short interspersed nuclear elements

T:

Thymidine

TRBP:

TAR RNA binding protein

TGF-ß:

Transforming growth factor-ß

TRBP:

TAR RNA-binding protein

tRNAs:

transfer RNAs

UPR:

Unfolded Protein Response

U:

Uracil

UTR:

Untranslated Region

XBP1:

X-box binding protein 1

References

  1. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  3. Ribas J, Lupold SE (2010) The transcriptional regulation of miR-21, its multiple transcripts, and their implication in prostate cancer. Cell Cycle 9(5):923–929

    Article  PubMed  CAS  Google Scholar 

  4. Yu J et al (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349(1):59–68

    Article  PubMed  CAS  Google Scholar 

  5. He L et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  PubMed  CAS  Google Scholar 

  6. Calin GA et al (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Nat Acad Sci 105(13):5166–5171

    Google Scholar 

  7. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  PubMed  CAS  Google Scholar 

  8. Corcoran DL et al (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4(4):e5279

    Article  Google Scholar 

  9. Aguda BD et al (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2 F, and Myc. Proc Natl Acad Sci U S A 105(50):19678–19683

    Article  PubMed  CAS  Google Scholar 

  10. He L et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  PubMed  CAS  Google Scholar 

  11. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101

    Article  PubMed  CAS  Google Scholar 

  12. Breving K, Esquela-Kerscher A (2009) The complexities of microRNA regulation: mirandering around the rules. Int J Biochem Cell Biol (In Press, Uncorrected Proof)

    Google Scholar 

  13. Scott GK et al (2006) Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res 66(3):1277–1281

    Article  PubMed  CAS  Google Scholar 

  14. Denli AM et al (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432(7014):231–235

    Article  PubMed  CAS  Google Scholar 

  15. Gregory RI et al (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014):235–240

    Article  PubMed  CAS  Google Scholar 

  16. Yeom KH et al (2006) Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 34(16):4622–4629

    Article  PubMed  CAS  Google Scholar 

  17. Beezhold KJ, Castranova V, Chen F (2010) Microprocessor of microRNAs: regulation and potential for therapeutic intervention. Mol Cancer 9:134

    Article  PubMed  Google Scholar 

  18. Michlewski G et al (2008) Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell 32(3):383–393

    Article  PubMed  CAS  Google Scholar 

  19. Guil S, Caceres JF (2007) The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol 14(7):591–596

    Article  PubMed  CAS  Google Scholar 

  20. Newman MA, Thomson JM, Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14(8):1539–1549

    Article  PubMed  CAS  Google Scholar 

  21. Trabucchi M et al (2009) The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459(7249):1010–1014

    Article  PubMed  CAS  Google Scholar 

  22. Han J et al (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136(1):75–84

    Article  PubMed  CAS  Google Scholar 

  23. Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  PubMed  CAS  Google Scholar 

  24. Lee EJ et al (2008) Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14(1):35–42

    Article  PubMed  CAS  Google Scholar 

  25. Chendrimada TP et al (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744

    Article  PubMed  CAS  Google Scholar 

  26. Haase AD et al (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6(10):961–967

    Article  PubMed  CAS  Google Scholar 

  27. Kok KH et al (2007) Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem 282(24):17649–17657

    Article  PubMed  CAS  Google Scholar 

  28. Chiosea S et al (2006) Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 169(5):1812–1820

    Article  PubMed  CAS  Google Scholar 

  29. Merritt WM et al (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650

    Article  PubMed  CAS  Google Scholar 

  30. Paroo Z et al (2009) Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139(1):112–122

    Article  PubMed  CAS  Google Scholar 

  31. Obernosterer G et al (2006) Post-transcriptional regulation of microRNA expression. RNA 12(7):1161–1167

    Article  PubMed  CAS  Google Scholar 

  32. Okamura K et al (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  PubMed  CAS  Google Scholar 

  33. Berezikov E et al (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336

    Article  PubMed  CAS  Google Scholar 

  34. Chong MM et al (2010) Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24(17):1951–1960

    Article  PubMed  CAS  Google Scholar 

  35. Yang JS et al (2010) Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc Natl Acad Sci U S A 107(34):15163–15168

    Article  PubMed  CAS  Google Scholar 

  36. Cheloufi S et al (2010) A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465(7298):584–589

    Article  PubMed  CAS  Google Scholar 

  37. Gregory RI et al (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640

    Article  PubMed  CAS  Google Scholar 

  38. Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35(7):368–376

    Article  PubMed  CAS  Google Scholar 

  39. Schwarz DS et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  PubMed  CAS  Google Scholar 

  40. Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123(Pt 11):1819–1823

    Article  PubMed  CAS  Google Scholar 

  41. Hock J, Meister G (2008) The Argonaute protein family. Genome Biol 9(2):210

    Article  PubMed  Google Scholar 

  42. Qi HH et al (2008) Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455(7211):421–424

    Article  PubMed  CAS  Google Scholar 

  43. Hieronymus H, Silver PA (2004) A systems view of mRNP biology. Genes Dev 18(23):2845–2860

    Article  PubMed  CAS  Google Scholar 

  44. Parker R, Sheth U (2007) P Bodies and the Control of mRNA Translation and Degradation. Mol Cell 25(5):635–646

    Article  PubMed  CAS  Google Scholar 

  45. Ding L, Han M (2007) GW182 family proteins are crucial for microRNA-mediated gene silencing. Trends Cell Biol 17(8):411–416

    Article  PubMed  CAS  Google Scholar 

  46. Zhang W, Dahlberg JE, Tam W (2007) MicroRNAs in tumorigenesis: a primer. Am J Pathol 171(3):728–738

    Article  PubMed  CAS  Google Scholar 

  47. Rehwinkel J et al (2005) A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11(11):1640–1647

    Article  PubMed  CAS  Google Scholar 

  48. Ramachandran V, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in arabidopsis. Science 321(5895):1490–1492

    Article  PubMed  CAS  Google Scholar 

  49. Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17(1):5–10

    Article  PubMed  CAS  Google Scholar 

  50. Gantier MP et al (2011) Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Research

    Google Scholar 

  51. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  PubMed  CAS  Google Scholar 

  52. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397(6716):271–274

    Article  PubMed  CAS  Google Scholar 

  53. Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167(1):27–33

    Article  PubMed  CAS  Google Scholar 

  54. Calfon M et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96

    Article  PubMed  CAS  Google Scholar 

  55. Haze K et al (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799

    PubMed  CAS  Google Scholar 

  56. Puthalakath H et al (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129(7):1337–1349

    Article  PubMed  CAS  Google Scholar 

  57. Behrman S, Acosta-Alvear D, Walter P (2011) A CHOP-regulated microRNA controls rhodopsin expression. J Cell Biol 192(6):919–927

    Article  PubMed  CAS  Google Scholar 

  58. Harding HP et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11(3):619–633

    Article  PubMed  CAS  Google Scholar 

  59. Szegezdi E et al (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7(9):880–885

    Article  PubMed  CAS  Google Scholar 

  60. Zinszner H et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12(7):982–995

    Article  PubMed  CAS  Google Scholar 

  61. Marciniak SJ et al (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18(24):3066–3077

    Article  PubMed  CAS  Google Scholar 

  62. Ben-Zur T et al (2000) The mammalian Odz gene family: homologs of a Drosophila pair-rule gene with expression implying distinct yet overlapping developmental roles. Dev Biol 217(1):107–120

    Article  PubMed  CAS  Google Scholar 

  63. Wang XZ et al (1998) Identification of novel stress-induced genes downstream of chop. EMBO J 17(13):3619–3630

    Article  PubMed  CAS  Google Scholar 

  64. Dai R et al (2010) miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27(Kip1)- and MEK/ERK-mediated cell cycle regulation. Biol Chem 391(7):791–801

    Article  PubMed  CAS  Google Scholar 

  65. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030

    Article  PubMed  CAS  Google Scholar 

  66. Szegezdi E et al (2009) Bcl-2 family on guard at the ER. Am J Physiol Cell Physiol

    Google Scholar 

  67. McCullough KD et al (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21(4):1249–1259

    Article  PubMed  CAS  Google Scholar 

  68. Qian L et al (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208(3):549–560

    Article  PubMed  CAS  Google Scholar 

  69. Koralov SB et al (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132(5):860–874

    Article  PubMed  CAS  Google Scholar 

  70. Xiao C et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414

    Article  PubMed  CAS  Google Scholar 

  71. Fontana L et al (2008) Antagomir-17–5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3(5):e2236

    Article  Google Scholar 

  72. Geslain R et al (2010) Chimeric tRNAs as tools to induce proteome damage and identify components of stress responses. Nucleic Acids Res 38(5):e30

    Google Scholar 

  73. Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10(8):578–585

    Article  PubMed  CAS  Google Scholar 

  74. Brown BD et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25(12):1457–1467

    Article  PubMed  CAS  Google Scholar 

  75. Saito A et al (2007) A novel ER stress transducer, OASIS, expressed in astrocytes. Antioxid Redox Signal 9(5):563–571

    Article  PubMed  CAS  Google Scholar 

  76. Murakami T et al (2006) Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J Neurochem 96(4):1090–1100

    Article  PubMed  CAS  Google Scholar 

  77. Kondo S et al (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7(2):186–194

    Article  PubMed  CAS  Google Scholar 

  78. Vellanki RN et al (2010) OASIS/CREB3L1 induces expression of genes involved in extracellular matrix production but not classical endoplasmic reticulum stress response genes in pancreatic beta-cells. Endocrinology 151(9):4146–4157

    Article  PubMed  CAS  Google Scholar 

  79. Pais H et al (2010) Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA 16(3):489–494

    Article  PubMed  CAS  Google Scholar 

  80. Voellenkle C et al (2010) MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 42(3):420–426

    Article  PubMed  CAS  Google Scholar 

  81. Fichtlscherer S et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684

    Article  PubMed  CAS  Google Scholar 

  82. Ji X et al (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55(11):1944–1949

    Article  PubMed  CAS  Google Scholar 

  83. van Rooij E, Marshall WS, Olson EN (2008) Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res 103(9):919–928

    Article  PubMed  Google Scholar 

  84. Tsang JS, Ebert MS, van Oudenaarden A (2010) Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol Cell 38(1):140–153

    Article  PubMed  CAS  Google Scholar 

  85. Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318(5848):271–274

    Google Scholar 

Download references

Acknowledgements

Our research is supported with the financial support of the Health Research Board (grant number HRA_HSR/2010/24) and the Millennium Fund from NUI Galway to S.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Read, D., Gupta, A., Cawley, K., Gupta, S. (2012). Regulation of ER Stress Responses by microRNAs. In: Agostinis, P., Afshin, S. (eds) Endoplasmic Reticulum Stress in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4351-9_6

Download citation

Publish with us

Policies and ethics