Skip to main content

Long-Term Behaviour of Stratospheric Transport and Mean Age as Observed from Balloon and Satellite Platforms

  • Chapter
  • 1578 Accesses

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Tracer observations from balloon-borne in-situ measurements and satellite observations have been transferred into mean age of stratospheric air. A 30-year time series of mean age of air from balloon observations for the period 1975 to 2005 has been generated. This time series indicated a trend of the stratospheric mean age for Northern midlatitudes which was positive or consistent to zero within its error bars, in apparent contradiction to results from Chemistry-Climate models. Satellite observations from the MIPAS instrument onboard of Envisat provided, for the first time ever, a global view of the stratospheric mean age, covering the period from 2002 to 2010, and the altitude range from 10 to 40 km. Analysis of MIPAS observations confirmed the positive trend of age of air for Northern midlatitudes, and provided a vertically resolved picture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Loewenstein, M., Jost, H., Podolske, J. R., Webster, C. R., Herman, R. L., Scott, D. C., Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F., Moore, F. L., Ray, E. A., Romashkin, P. A., & Strahan, S. E. (2001). Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O. Journal of Geophysical Research, 106(D23), 32295–32314. doi:10.1029/2001JD000465.

    Article  Google Scholar 

  • Austin, J., & Li, F. (2006). On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air. Geophysical Research Letters, 33, L17807. doi:10.1029/2006GL026867.

    Article  Google Scholar 

  • Austin, J., Wilson, J., Li, F., & Vömel, H. (2007). Evolution of water vapor and age of air in coupled chemistry climate model simulations of the stratosphere. Journal of the Atmospheric Sciences, 64(3), 905–921.

    Article  Google Scholar 

  • Baldwin, M. P., Dameris, M., & Shepherd, T. G. (2007). How will the stratosphere affect climate change? Science, 316(5831), 1576–1577. doi:10.1126/science.1144303.

    Article  Google Scholar 

  • Boering, K. A., Wofsy, S. C., Daube, B. C., Schneider, H. R., Loewenstein, M., Podolske, J. R., & Conway, T. J. (1996). Stratospheric mean ages and transport rates from observations of carbon dioxide and nitrous oxide. Science, 274(5291), 1340–1343. doi:10.1126/science.274.5291.1340.

    Article  Google Scholar 

  • Braesicke, P., Stiller, G., Morgenstern, O., & Pyle, J. A. (2008a). Modelled zonal asymmetries in age-of-air: To what extent are they real. Geophysical Research Abstracts, 10, EGU2008-A-04791.

    Google Scholar 

  • Braesicke, P., Stiller, G., Morgenstern, O., & Pyle, J. A. (2008b). Zonal asymmetries in age-of-air and their relevance for transport into the subtropical lowermost stratosphere. Poster contribution to the IVth SPARC General Assembly, Bologna, Italy, 31 August to 5 September 2008.

    Google Scholar 

  • Brasseur, G., & Solomon, S. (1986). Aeronomy of the middle atmosphere (2nd ed.). Atmospheric science library. Dordrecht: Reidel.

    Book  Google Scholar 

  • Burgess, A. B., Grainger, R. G., Dudhia, A., Payne, V. H., & Jay, V. L. (2004). MIPAS measurement of sulphur hexafluoride (SF6). Geophysical Research Letters, 31, L05112. doi:10.1029/2003GL019143.

    Article  Google Scholar 

  • Burgess, A. B., Grainger, R. G., & Dudhia, A. (2006). Zonal mean atmospheric distribution of sulphur hexafluoride (SF6). Geophysical Research Letters, 33, L07809. doi:10.1029/2005GL025410.

    Article  Google Scholar 

  • Butchart, N., & Scaife, A. A. (2001). Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410(6830), 799–802. doi:10.1038/35071047.

    Article  Google Scholar 

  • Butchart, N., Scaife, A. A., Bourqui, M., de Grandpre, J., Hare, S. H. E., Kettleborough, J., Langematz, U., Manzini, E., Sassi, F., Shibata, K., Shindell, D., & Sigmond, M. (2006). Simulations of anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dynamics, 27(7–8), 727–741. doi:10.1007/s00382-006-0162-4.

    Article  Google Scholar 

  • Ehhalt, D. H., Heidt, L. E., Lueb, R. H., & Martell, E. A. (1975). Concentrations of CH4, CO, CO2, H2, H2O and N2O in the upper stratosphere. Journal of the Atmospheric Sciences, 32(1), 163–169.

    Article  Google Scholar 

  • Engel, A., Schmidt, U., & McKenna, D. (1998). Stratospheric trends of CFC–12 over the past two decades: Recent observational evidence of declining growth rates. Geophysical Research Letters, 25(17), 3319–3322.

    Article  Google Scholar 

  • Engel, A., Strunk, M., Müller, M., Haase, H.-P., Poss, C., Levin, I., & Schmidt, U. (2002). Temporal development of total chlorine in the high-latitude stratosphere based on reference distributions of mean age derived from CO2 and SF6. Journal of Geophysical Research, 107(D12). doi:10.1029/2001JD000584.

  • Engel, A., Haase, H. P., Schmidt, U., Poss, C., & Levin, I. (2003). The temporal trend of CO2 and the mean age of air in the stratosphere derived from balloon borne whole air samples. In N. R. P. Harris, G. T. Amanatidis & J. G. Levine (Eds.), Proc. 6th European symposium on stratospheric ozone, 2–6 Sep 2002, Göteborg, Sweden (pp. 152–158). Brussels: European Commission. Air Pollution Research Report 79.

    Google Scholar 

  • Engel, A., Möbius, T., Haase, H.-P., Bönisch, H., Wetter, T., Schmidt, U., Levin, I., Reddmann, T., Oelhaf, H., Wetzel, G., Grunow, K., Huret, N., & Pirre, M. (2006). Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003. Atmospheric Chemistry and Physics, 6, 267–282.

    Article  Google Scholar 

  • Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., & Boering, K. (2009). Age of stratospheric air unchanged within uncertainties over the past 30 years. Nature Geoscience, 2(1), 28–31. doi:10.1038/ngeo388.

    Article  Google Scholar 

  • Fabian, P., Borchers, R., Weiler, K. H., Schmidt, U., Volz, A., Ehhalt, D. H., & Seiler, W. (1979). Simultaneously measured vertical profiles of H2, CH4, CO, N2O, CFCl3, and CF2Cl2 in the midlatitude stratosphere. Journal of Geophysical Research, 84(C6), 3149–3154. doi:10.1029/JC084iC06p03149.

    Article  Google Scholar 

  • Garcia, R. R., & Randel, W. J. (2008). Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. Journal of the Atmospheric Sciences, 65(8), 2731–2739. doi:10.1175/2008JAS2712.1.

    Article  Google Scholar 

  • Haigh, J. D., Austin, J., Butchart, N., Chanin, M.-L., Crooks, S., Gray, L. J., Halenka, T., Hampson, J., Hood, L. L., Isaksen, I. S. A., Keckhut, P., Labitzke, K., Langematz, U., Matthes, K., Palmer, M., Rognerud, B., Tourpali, K., & Zerefos, C. (2004). Solar variability and climate: selected results from the SOLICE project. SPARC Newsletter, 23, 19–29.

    Google Scholar 

  • Hall, B. D., Dutton, G. S., Mondeel, D. J., Nance, J. D., Rigby, M., Butler, J. H., Moore, F. L., Hurst, D. F., & Elkins, J. W. (2011). Improving measurements of sf6 for the study of atmospheric transport and emissions. Atmospheric Measurement Techniques, 4(11), 2441–2451. doi:10.5194/amt-4-2441-2011.

    Article  Google Scholar 

  • Hall, T. M., & Plumb, R. A. (1994). Age as a diagnostic of stratospheric transport. Journal of Geophysical Research, 99(D1), 1059–1070.

    Article  Google Scholar 

  • IPCC (2007). Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (Eds.), Climate change 2007: the physical science basis Cambridge: Cambridge University Press (996 pp.)

    Google Scholar 

  • Kida, H. (1983). General circulation of air parcels and transport characteristics derived from a hemispheric GCM, Part 2, Very long-term motions of air parcels in the troposphere and stratosphere. Journal of the Meteorological Society of Japan, 61, 510–522.

    Google Scholar 

  • Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research, 107(D24), 4749. doi:10.1029/2002JD002224.

    Article  Google Scholar 

  • Labitzke, K. (1987). Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophysical Research Letters, 14(5), 535–537.

    Article  Google Scholar 

  • Lean, J. L., Rottman, G. R., Kyle, H. L., Woods, T. N., Hickey, J. R., & Puga, L. R. (1997). Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm). Journal of Geophysical Research, 102(D25), 29939–29956. doi:10.1029/97JD02092.

    Article  Google Scholar 

  • Li, S., & Waugh, D. W. (1999). Sensitivity of mean age and long-lived tracers to transport parameters in a two-dimensional model. Journal of Geophysical Research, 104(D23), 30559–30569. doi:10.1029/1999JD900913.

    Article  Google Scholar 

  • Plumb, R. A., Heres, W., Neu, J. L., Mahowald, N., del Corral, J., Toon, G. C., Ray, E., Moore, F., & Andrews, A. E. (2002). Global tracer modeling during SOLVE: high-latitude descent and mixing. Journal of Geophysical Research, 107, 8309. doi:10.1029/2001JD001023, printed 108(D5), 2003.

    Article  Google Scholar 

  • Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E., & Forster, P. (2006). Decreases in stratospheric water vapor after 2001: links to changes in the tropical tropopause and the Brewer–Dobson circulation. Journal of Geophysical Research, 111, D12312. doi:10.1029/2005JD006744.

    Article  Google Scholar 

  • Ray, E. A., Moore, F. L., Elkins, J. W., Hurst, D. F., Romashkin, P. A., Dutton, G. S., & Fahey, D. W. (2002). Descent and mixing in the 1999–2000 northern polar vortex inferred from in situ tracer measurements. Journal of Geophysical Research, 107(D20), 8285. doi:10.1029/2001JD000961.

    Article  Google Scholar 

  • Reddmann, T., Ruhnke, R., & Kouker, W. (2001). Three-dimensional model simulations of SF6 with mesospheric chemistry. Journal of Geophysical Research, 106(D13), 14525–14537. doi:10.1029/2000JD900700.

    Article  Google Scholar 

  • Rinsland, C. P., Mahieu, E., Zander, R., Nassar, R., Bernath, P., Boone, C., & Chiou, L. S. (2006). Long-term stratospheric carbon tetrafluoride (CF4) increase inferred from 1985–2004 infrared space-based solar occultation measurements. Geophysical Research Letters, 33, L02808. doi:10.1029/2005GL024709.

    Article  Google Scholar 

  • Schmidt, U., & Khedim, A. (1991). In situ measurements of carbon dioxide in the winter Arctic vortex and at midlatitudes: an indicator of the “age” of stratospheric air. Geophysical Research Letters, 18(4), 763–766.

    Article  Google Scholar 

  • Schmidt, U., Bauer, R., Khedim, A., Klein, E., Kulessa, G., & Schiller, C. (1991). Profile observations of long-lived trace gases in the Arctic Vortex. Geophysical Research Letters, 18(4), 767–770.

    Article  Google Scholar 

  • Shepherd, T. G. (2008). Dynamics, stratospheric ozone, and climate change. Atmosphere-Ocean, 46(1), 117–138. doi:10.3137/ao.460106.

    Article  Google Scholar 

  • Stiller, G. P., v. Clarmann, T., Höpfner, M., Glatthor, N., Grabowski, U., Kellmann, S., Kleinert, A., Linden, A., Milz, M., Reddmann, T., Steck, T., Fischer, H., Funke, B., López-Puertas, M., & Engel, A. (2008). Global distribution of mean age of stratospheric air from MIPAS SF6 measurements. Atmospheric Chemistry and Physics, 8, 677–695.

    Article  Google Scholar 

  • Strunk, M., Engel, A., Schmidt, U., Volk, C. M., Wetter, T., Levin, I., & Glatzel-Mattheier, H. (2000). CO2 and SF6 as stratospheric age tracers: consistency and the effect of mesospheric SF6-loss. Geophysical Research Letters, 27(3), 341–344. doi:10.1029/1999GL011044.

    Article  Google Scholar 

  • Thompson, D. W. J., & Solomon, S. (2005). Recent stratospheric climate trends as evidenced in radiosonde data: global structure and tropospheric linkages. Journal of Climate, 18(22), 4785–4795. doi:10.1175/JCLI3585.1.

    Article  Google Scholar 

  • Volk, C. M., Elkins, J. W., Fahey, D. W., Dutton, G. S., Gilligan, J. M., Loewenstein, M., Podolske, J. R., Chan, K. R., & Gunson, M. R. (1997). Evaluation of source gas lifetimes from stratospheric observations. Journal of Geophysical Research, 102(D21), 25543–25564. doi:10.1029/97JD02215.

    Article  Google Scholar 

  • von Clarmann, T., Linden, A., Oelhaf, H., Fischer, H., Friedl-Vallon, F., Piesch, C., Seefeldner, M., Völker, W., Bauer, R., Engel, A., & Schmidt, U. (1995). Determination of the stratospheric organic chlorine budget in the spring arctic vortex from MIPAS B limb emission spectra and air sampling experiments. Journal of Geophysical Research, 100(D7), 13979–13997.

    Article  Google Scholar 

  • von Clarmann, T., Stiller, G. P., Eckert, E., Glatthor, N., Grabowski, U., Haenel, F., Höpfner, M., Kellmann, S., Laeng, A., Linden, A., Lossow, S., Orphal, J., Plieninger, J., Schieferdecker, T., Versick, S., Wiegele, A., Funke, B., García-Comas, M., López-Puertas, M., & Grutter, M. (2010a). MIPAS observations of stratospheric and upper tropospheric trace gases: an overview. In Proc. ‘ESA living planet symposium’: Vol. ESA SP-686, 28 June–2 July 2010, Bergen, Norway. CD-ROM, ESA Publications Division, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands.

    Google Scholar 

  • von Clarmann, T., Stiller, G., Grabowski, U., Eckert, E., & Orphal, J. (2010b). Technical note: trend estimation from irregularly sampled, correlated data. Atmospheric Chemistry and Physics, 10, 6737–6747.

    Article  Google Scholar 

  • Waugh, D. (2009). The age of stratospheric air. Nature Geoscience, 2, 14–16.

    Article  Google Scholar 

  • Waugh, D. W., & Hall, T. M. (2002). Age of stratospheric air: theory, observations, and models. Reviews of Geophysics, 40(4), 1010. doi:10.1029/2000RG000101.

    Article  Google Scholar 

  • Zander, R., Solomon, S., Mahieu, E., Goldman, A., Rinsland, C. P., Gunson, M. R., Abrams, M. C., Chang, A. Y., Salawitch, R. J., Michelsen, H. A., Newchurch, M. J., & Stiller, G. P. (1996). Increase of stratospheric carbon tetrafluoride (CF4) based on ATMOS observations from space. Geophysical Research Letters, 23(17), 2353–2356.

    Article  Google Scholar 

Download references

Acknowledgements

ESA has provided MIPAS level-1b data. The authors gratefully acknowledge that sulphur hexaflouride data from the NOAA/ESRL halocarbons in situ program have been made available. This project has been supported by DFG within the CAWSES priority program (grants STI 210/4-1, EN 367/4-1, STI 210/5-2, EN 367/4-2, and STI 210/5-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Stiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stiller, G. et al. (2013). Long-Term Behaviour of Stratospheric Transport and Mean Age as Observed from Balloon and Satellite Platforms. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_32

Download citation

Publish with us

Policies and ethics