Infra-red Radiative Cooling/Heating of the Mesosphere and Lower Thermosphere Due to the Small-Scale Temperature Fluctuations Associated with Gravity Waves

  • Alexander A. Kutepov
  • Artem G. Feofilov
  • Alexander S. Medvedev
  • Uwe Berger
  • Martin Kaufmann
  • Adalbert W. A. Pauldrach
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


We address the effect of an additional infrared radiative cooling/heating of the mesosphere and lower thermosphere (MLT) in the infrared bands of CO2, O3 and H2O due to small-scale irregular temperature fluctuations associated with gravity waves (GWs). These disturbances are not well resolved by present general circulation models (GCMs), but they alter the radiative transfer and cooling rates significantly. A statistical model of gravity wave-induced temperature variations was applied to large-scale temperature profiles, and the corresponding direct radiative calculations were performed with accounting for the breakdown of the local thermodynamic equilibrium (non-LTE). We show that temperature fluctuations can cause an additional cooling of up to 4 K day−1 near the mesopause. The effect is produced mainly by the fundamental 15 μm band of the main CO2 isotope 12C16O2 (626). A simple parametrization has been derived that computes corrections depending on the temperature fluctuations variance, which need to be added in radiative calculations to the mean temperature and the volume mixing ratios (VMRs) of CO2 and O(3P) to account for additional cooling/heating caused by the unresolved disturbances. Implementation of this scheme into the LIMA model resulted in a colder and broader simulated summer mesopause in agreement with recent lidar measurements at Spitsbergen.


Local Thermodynamic Equilibrium Vertical Wavelength Additional Cool Vertical Wavenumber Atmospheric Opacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berger, U. (2008). Modeling of middle atmosphere dynamics with LIMA. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1170–1200. doi: 10.1016/j.jastp.2008.02.004. CrossRefGoogle Scholar
  2. Castle, K. J., Kleissas, K. M., Rhinehart, J. M., Hwang, E. S., & Dodd, J. A. (2006). Vibrational relaxation of CO2(ν 2) by atomic oxygen. Journal of Geophysical Research, 111(A10), A09303. doi: 10.1029/2006JA011736. CrossRefGoogle Scholar
  3. Fritts, D. C., & Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Annals of Geophysics, 41(1), 1003–1066. doi: 10.1029/2001RG000106. Google Scholar
  4. Gusev, O. A., & Kutepov, A. A. (2003). Non-LTE gas in planetary atmospheres. In K. W. I. Hubeny & D. Mihalas (Eds.), Astronomical society of the pacific conference series: Vol. 288. Stellar atmosphere modeling (pp. 318–330). Google Scholar
  5. Hedin, A. E. (1991). Extension of the msis thermospheric model into the middle and lower atmosphere. Journal of Geophysical Research, 96, 1159. CrossRefGoogle Scholar
  6. Höffner, J., & Lübken, F.-J. (2007). Potassium lidar temperatures and densities in the mesopause region at Spitsbergen (78degn). Journal of Geophysical Research, 112(D11), D20114. doi: 10.1029/2007JD008612. CrossRefGoogle Scholar
  7. Kaufmann, M., Gusev, O. A., Grossmann, K. U., Roble, R. G., Hagan, M. E., Hartsough, C., & Kutepov, A. A. (2002). The vertical and horizontal distribution of CO2 densities in the upper mesosphere and lower thermosphere as measured by crista. Journal of Geophysical Research, 107, 8182. doi: 10.1029/2001JD000704. CrossRefGoogle Scholar
  8. Kutepov, A. A., Gusev, O. A., & Ogibalov, V. P. (1998). Solution of the non-LTE problem for molecular gas in planetary atmospheres: superiority of accelerated lambda iteration. Journal of Quantitative Spectroscopy & Radiative Transfer, 60. doi: 10.1016/S0022-4073(97)00167-2.
  9. Kutepov, A. A., Feofilov, A. G., Marshall, B. T., Gordley, L. L., Pesnell, W. D., Goldberg, R. A., & Russell, J. M. (2006). Saber temperature observations in the summer polar mesosphere and lower thermosphere: importance of accounting for the CO2 ν 2 quanta v-v exchange. Geophysical Research Letters, 33, L21809. doi: 10.1029/2006GL026591. CrossRefGoogle Scholar
  10. Kutepov, A. A., Feofilov, A. G., Medvedev, A. S., Pauldrach, A. W. A., & Hartogh, P. (2007). Small-scale temperature fluctuations associated with gravity waves cause additional radiative cooling of the mesopause region. Geophysical Research Letters, 34, L24807. doi: 10.1029/2007GL032392. CrossRefGoogle Scholar
  11. Kutepov, A. A., Feofilov, A. G., Medvedev, A. S., Berger, U., & Kaufmann, M. (2012). Radiative cooling of the mesopause region due to small-scale fluctuations of temperature, [O(3P)] and [CO2] associated with gravity waves. Submitted to Geophysical Research Letters. Google Scholar
  12. Manuilova, R. O., Gusev, O. A., Kutepov, A. A., von Clarmann, T., Oelhaf, H., Stiller, G. P., Wegner, A., López Puertas, M., Martín-Torres, F. J., Zaragoza, G., & Flaud, J. M. (1998). Modelling of non-LTE limb radiance spectra of IR ozone bands for the MIPAS space experiment. Journal of Quantitative Spectroscopy & Radiative Transfer, 59, 405–422. doi: 10.1016/S0022-4073(97)00120-9. CrossRefGoogle Scholar
  13. Medvedev, A. S., & Klaassen, G. P. (2000). Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: basic formulation and sensitivity tests. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1015–1033. doi: 10.1016/S1364-6826(00)00067-5. CrossRefGoogle Scholar
  14. Sharma, R. D., & Wintersteiner, P. P. (1990). Role of carbon dioxide in cooling planetary thermospheres. Geophysical Research Letters, 17, 2201–2204. doi: 10.1029/GL017i012p02201. CrossRefGoogle Scholar
  15. Shved, G. M., Kutepov, A. A., & Ogibalov, V. P. (1998). Non-local thermodynamic equilibrium in CO2 in the middle atmosphere. I. Input data and populations of the ν 3 mode manifold states. JASTP, 60, 289–314. doi: 10.1016/S1364-6826(97)00076-X. Google Scholar
  16. Sica, R. J., & Russell, A. T. (1999). How many waves are in the gravity wave spectrum? Geophysical Research Letters, 24, 3617–3620. doi: 10.1029/1999GL003683. CrossRefGoogle Scholar
  17. Smith, A. K., Marsh, D. R., Mlynczak, M. G., & Mast, J. C. (2010). Temporal variations of atomic oxygen in the upper mesosphere from saber. Journal of Geophysical Research, 115, D18309. doi: 10.1029/2009JD013434. CrossRefGoogle Scholar
  18. Vadas, S. L., & Fritts, D. C. (2005). Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. Journal of Geophysical Research, 110, D15103. doi: 10.1029/2004JD005574. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander A. Kutepov
    • 1
  • Artem G. Feofilov
    • 2
  • Alexander S. Medvedev
    • 3
  • Uwe Berger
    • 4
  • Martin Kaufmann
    • 5
  • Adalbert W. A. Pauldrach
    • 6
  1. 1.Department of PhysicsThe Catholic University of America/NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Laboratory of Dynamical MeteorologyÉcole PolytechniquePalaiseau CedexFrance
  3. 3.Max Planck Institute for Solar System ResearchKatlenburg-LindauGermany
  4. 4.Leibniz-Institute of Atmospheric PhysicsKühlungsbornGermany
  5. 5.Institute for Chemistry and Dynamics of GeosphereForschungszentrum Jülich GmbHJülichGermany
  6. 6.University Observatory Munich/Wendelstein ObservatoryMunichGermany

Personalised recommendations