Advertisement

Models of Solar Total and Spectral Irradiance Variability of Relevance for Climate Studies

Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

The variable radiative output of the Sun is a prime external driver of the Earth’s climate system. Just how effective this driver is has remained relatively uncertain, however, partly due to missing knowledge on the exact variation of the Sun’s irradiance over time in different parts of the solar spectrum. Due to the limited length of the time series of measured irradiance and inconsistencies between different measurements, models of solar irradiance variation are particularly important. Here we provide an overview of progress over the last half decade in the development and application of the SATIRE family of models. For the period after 1974, the model makes use of the full-disc magnetograms of the Sun and reproduces up to 97 % of the measured irradiance variation. Over this time frame, there is no evidence for any non-magnetic change in the solar irradiance on time scales longer than about a day. We have also been able to compute total solar irradiance since the Maunder minimum and further into the past throughout the whole Holocene. The Sun’s spectral irradiance from the Lyman α line in the UV to the far infrared has also been reconstructed throughout the telescopic era.

Keywords

Sunspot Number Solar Irradiance Solar Surface Total Solar Irradiance Spectral Irradiance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft, DFG project number SO 711/1 and by the WCU grant No. R31-10016 funded by the Korean Ministry of Education, Science and Technology.

References

  1. Ball, W. T., Unruh, Y. C., Krivova, N. A., Solanki, S. K., & Harder, J. W. (2011). Solar irradiance: a six-year comparison between SORCE observations and the SATIRE model. Astronomy & Astrophysics, 530, A71. CrossRefGoogle Scholar
  2. Balmaceda, L., Krivova, N. A., & Solanki, S. K. (2007). Reconstruction of solar irradiance using the Group sunspot number. Advances in Space Research, 40, 986–989. CrossRefGoogle Scholar
  3. Balmaceda, L. A., Solanki, S. K., Krivova, N. A., & Foster, S. (2009). A homogeneous sunspot areas database covering more than 130 years. Journal of Geophysical Research, 114, A07104. doi: 10.1029/2009JA014299. CrossRefGoogle Scholar
  4. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., & Bonani, G. (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294, 2130–2136. CrossRefGoogle Scholar
  5. Camp, C. D., & Tung, K. K. (2007). Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophysical Research Letters, 34, L14703. doi: 10.1029/2007GL030207. CrossRefGoogle Scholar
  6. Chapman, G. A., Cookson, A. M., & Dobias, J. J. (1997). Solar variability and the relation of facular to sunspot areas during solar cycle 22. The Astrophysical Journal, 482, 541–545. CrossRefGoogle Scholar
  7. Christensen-Dalsgaard, J. (2002). Helioseismology. Reviews of Modern Physics, 74, 1073–1129. doi: 10.1103/RevModPhys.74.1073. CrossRefGoogle Scholar
  8. Crouch, A. D., Charbonneau, P., Beaubien, G., & Paquin-Ricard, D. (2008). A model for the total solar irradiance based on active region decay. The Astrophysical Journal, 677, 723–741. doi: 10.1086/527433. CrossRefGoogle Scholar
  9. Danilovic, S., Solanki, S. K., Livingston, W., Krivova, N. A., & Vince, I. (2007). Magnetic source of the solar cycle variation of the Mn I 539.4 nm line. In Modern solar facilities—advanced solar sciences (pp. 189–192). Göttingen: Universtitätsverlag. Google Scholar
  10. Danilovic, S., Solanki, S. K., Livingston, W., Krivova, N. A., & Vince, I. (2011). The solar cycle variation of the Mn I 539.4 nm line. Astronomy & Astrophysics. doi: 10.1051/0004-6361/201116565. Submitted. Google Scholar
  11. DeLand, M. T., & Cebula, R. P. (2008). Creation of a composite solar ultraviolet irradiance data set. Journal of Geophysical Research, 113(A12), A11103. doi: 10.1029/2008JA013401. CrossRefGoogle Scholar
  12. Dewitte, S., Crommelynck, D., Mekaoui, S., & Joukoff, A. (2004). Measurement and uncertainty of the long term total solar irradiance trend. Solar Physics, 224, 209–216. CrossRefGoogle Scholar
  13. Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S. K., Spruit, H. C., Unruh, Y., & Vögler, A. (2009). Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Science Reviews, 145, 337–380. doi: 10.1007/s11214-009-9562-1. CrossRefGoogle Scholar
  14. Eddy, J. A. (1976). The Maunder minimum. Science, 192, 1189–1202. CrossRefGoogle Scholar
  15. Ermolli, I., Berrilli, F., & Florio, A. (2003). A measure of the network radiative properties over the solar activity cycle. Astronomy & Astrophysics, 412, 857–864. CrossRefGoogle Scholar
  16. Ermolli, I., Solanki, S. K., Tlatov, A. G., Krivova, N. A., Ulrich, R. K., & Singh, J. (2009). Comparison among Ca II K spectroheliogram time series with an application to solar activity studies. The Astrophysical Journal, 698, 1000–1009. CrossRefGoogle Scholar
  17. Fligge, M., Solanki, S. K., & Unruh, Y. C. (2000). Modelling irradiance variations from the surface distribution of the solar magnetic field. Astronomy & Astrophysics, 353, 380–388. Google Scholar
  18. Floyd, L., Rottman, G., DeLand, M., & Pap, J. (2003). 11 years of solar UV irradiance measurements from UARS. ESA SP, 535, 195–203. Google Scholar
  19. Fontenla, J. M., Harder, J., Rottman, G., Woods, T. N., Lawrence, G. M., & Davis, S. (2004). The signature of solar activity in the infrared spectral irradiance. The Astrophysical Journal Letters, 605, L85–L88. CrossRefGoogle Scholar
  20. Fontenla, J. M., Avrett, E., Thuillier, G., & Harder, J. (2006). Semiempirical models of the solar atmosphere. I. The quiet- and active sun photosphere at moderate resolution. The Astrophysical Journal, 639, 441–458. CrossRefGoogle Scholar
  21. Foster, S. (2004). Reconstruction of solar irradiance variations for use in studies of global climate change: application of recent SOHO observations with historic data from the Greenwich observatory. Ph.D. thesis, University of Southhampton, School of Physics and Astronomy. Google Scholar
  22. Fröhlich, C., & Lean, J. (1997). Total solar irradiance variations: the construction of a composite and its comparison with models. ESA SP, 415, 227–233. Google Scholar
  23. Fröhlich, C. (2006). Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21. Space Science Reviews, 125, 53–65. CrossRefGoogle Scholar
  24. Fröhlich, C. (2009). Evidence of a long-term trend in total solar irradiance. Astronomy & Astrophysics, 501, L27–L30. doi: 10.1051/0004-6361/200912318. CrossRefGoogle Scholar
  25. Fröhlich, C. (2011). Solar constant. Construction of a composite total solar irradiance (TSI) time series from 1978 to present. http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.
  26. Fröhlich, C., Andersen, B., Appourchaux, T., Berthomieu, G., Crommelynck, D. A., Domingo, V., Fichot, A., Finsterle, W., Gomez, M. F., Gough, D., Jimenez, A., Leifsen, T., Lombaerts, M., Pap, J. M., Provost, J., Cortes, T. R., Romero, J., Roth, H., Sekii, T., Telljohann, U., Toutain, T., & Wehrli, C. (1997). First results from VIRGO, the experiment for helioseismology and solar irradiance monitoring on SOHO. Solar Physics, 170, 1–25. CrossRefGoogle Scholar
  27. Garcia, R. R. (2010). Atmospheric physics: solar surprise? Nature, 467, 668–669. doi: 10.1038/467668a. CrossRefGoogle Scholar
  28. Gray, L. J., Beer, J., Geller, M., Haigh, J. D., Lockwood, M., Matthes, K., Cubasch, U., Fleitmann, D., Harrison, G., Hood, L., Luterbacher, J., Meehl, G. A., Shindell, D., van Geel, B., & White, W. (2010). Solar influences on climate. Reviews of Geophysics, 48, RG4001. doi: 10.1029/2009RG000282. CrossRefGoogle Scholar
  29. Haigh, J. D. (1994). The role of stratospheric ozone in modulating the solar radiative forcing of climate. Nature, 370, 544–546. CrossRefGoogle Scholar
  30. Haigh, J. D. (2007). The sun and the earth’s climate. Living Reviews in Solar Physics. http://solarphysics.livingreviews.org/Articles/lrsp-2007-2/.
  31. Haigh, J. D., Winning, A. R., Toumi, R., & Harder, J. W. (2010). An influence of solar spectral variations on radiative forcing of climate. Nature, 467, 696–699. doi: 10.1038/nature09426. CrossRefGoogle Scholar
  32. Hall, J. C., & Lockwood, G. W. (2004). The chromospheric activity and variability of cycling and flat activity solar-analog stars. The Astrophysical Journal, 614, 942–946. CrossRefGoogle Scholar
  33. Hansen, J., Sato, M., Nazarenko, L., Ruedy, R., Lacis, A., Koch, D., Tegen, I., Hall, T., Shindell, D., Santer, B., Stone, P., Novakov, T., Thomason, L., Wang, R., Wang, Y., Jacob, D., Hollandsworth, S., Bishop, L., Logan, J., Thompson, A., Stolarski, R., Lean, J., Willson, R., Levitus, S., Antonov, J., Rayner, N., Parker, D., & Christy, J. (2002). Climate forcings in Goddard Institute for space studies SI2000 simulations. Journal of Geophysical Research, 107. doi: 10.1029/2001JD001143.
  34. Hansen, J., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G. A., Russell, G., Aleinov, I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio, A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch, D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V., Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev, N., Thresher, D., Wielicki, B., Wong, T., Yao, M., & Zhang, S. (2005). Efficacy of climate forcings. Journal of Geophysical Research, 110(D9), D18104. doi: 10.1029/2005JD005776. CrossRefGoogle Scholar
  35. Hansen, J. E. (2000). The Sun’s role in long-term climate change. Space Science Reviews, 94, 349–356. CrossRefGoogle Scholar
  36. Harder, J. W., Fontenla, J. M., Pilewskie, P., Richard, E. C., & Woods, T. N. (2009). Trends in solar spectral irradiance variability in the visible and infrared. Geophysical Research Letters, 36. doi: 10.1029/2008GL036797.
  37. Harvey, K. L. (1992). The cyclic behavior of solar activity. In ASP conf. ser.: Vol. 27. The solar cycle (pp. 335–367). Google Scholar
  38. Harvey, K. L. (1994). The solar magnetic cycle. In R. J. Rutten & C. J. Schrijver (Eds.), Solar surface magnetism (p. 347). Dordrecht: Kluwer. CrossRefGoogle Scholar
  39. Hoyt, D. V., & Schatten, K. H. (1993). A discussion of plausible solar irradiance variations, 1700–1992. Journal of Geophysical Research, 98, 18895–18906. CrossRefGoogle Scholar
  40. Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V., Six, K., Segschneider, J., Giorgetta, M. A., Crowley, T. J., Pongratz, J., Krivova, N. A., Vieira, L. E., Solanki, S. K., Klocke, D., Botzet, M., Esch, M., Gayler, V., Haak, H., Raddatz, T. J., Roeckner, E., Schnur, R., Widmann, H., Claussen, M., Stevens, B., & Marotzke, J. (2010). Climate and carbon-cycle variability over the last millennium. Climate of the Past, 6, 723–737. doi: 10.5194/cp-6-723-2010. CrossRefGoogle Scholar
  41. Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research, 107, D24. doi: 10.1029/2002JD002224. CrossRefGoogle Scholar
  42. Kodera, K., & Kuroda, Y. (2005). A possible mechanism of solar modulation of the spatial structure of the North Atlantic Oscillation. Journal of Geophysical Research, 110, D02111. doi: 10.1029/2004JD005258. CrossRefGoogle Scholar
  43. Kopp, G., & Lean, J. L. (2011). A new, lower value of total solar irradiance: evidence and climate significance. Geophysical Research Letters, 38, L01706. doi: 10.1029/2010GL045777. CrossRefGoogle Scholar
  44. Kopp, G., Lawrence, G., & Rottman, G. (2005). The total irradiance monitor (TIM): science results. Solar Physics, 230, 129–139. doi: 10.1007/s11207-005-7433-9. CrossRefGoogle Scholar
  45. Kopp, G., Heuerman, K., Harber, D., & Drake, G. (2007). The TSI radiometer facility: absolute calibrations for total solar irradiance instruments. In Society of photo-optical instrumentation engineers (SPIE) conference series: Vol. 6677. doi: 10.1117/12.734553. Google Scholar
  46. Krivova, N. A., & Solanki, S. K. (2004). Effect of spatial resolution on estimating the Sun’s magnetic flux. Astronomy & Astrophysics, 417, 1125–1132. CrossRefGoogle Scholar
  47. Krivova, N. A., & Solanki, S. K. (2005). Reconstruction of solar UV irradiance. Advances in Space Research, 35, 361–364. CrossRefGoogle Scholar
  48. Krivova, N. A., & Solanki, S. K. (2008). Models of solar irradiance variations: current status. Journal of Astrophysics and Astronomy, 29, 151–158. CrossRefGoogle Scholar
  49. Krivova, N. A., Solanki, S. K., Fligge, M., & Unruh, Y. C. (2003). Reconstruction of solar total and spectral irradiance variations in cycle 23: is solar surface magnetism the cause? Astronomy & Astrophysics, 399, L1–L4. CrossRefGoogle Scholar
  50. Krivova, N. A., Solanki, S. K., & Floyd, L. (2006). Reconstruction of solar UV irradiance in cycle 23. Astronomy & Astrophysics, 452, 631–639. CrossRefGoogle Scholar
  51. Krivova, N. A., Balmaceda, L., & Solanki, S. K. (2007). Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astronomy & Astrophysics, 467, 335–346. CrossRefGoogle Scholar
  52. Krivova, N. A., Solanki, S. K., & Wenzler, T. (2009a). ACRIM-gap and total solar irradiance revisited: is there a secular trend between 1986 and 1996? Geophysical Research Letters, 36, L20101. doi: 10.1029/2009GL040707. CrossRefGoogle Scholar
  53. Krivova, N. A., Solanki, S. K., Wenzler, T., & Podlipnik, B. (2009b). Reconstruction of solar UV irradiance since 1974. Journal of Geophysical Research, 114, D00I04. doi: 10.1029/2009JD012375. CrossRefGoogle Scholar
  54. Krivova, N. A., Vieira, L. E. A., & Solanki, S. K. (2010). Reconstruction of solar spectral irradiance since the Maunder minimum. Journal of Geophysical Research, 115, A12112. doi: 10.1029/2010JA015431. CrossRefGoogle Scholar
  55. Krivova, N. A., Solanki, S. K., & Schmutz, W. (2011a). Solar total irradiance in cycle 23. Astronomy & Astrophysics, 529, A81. doi: 10.1051/0004-6361/201016234. CrossRefGoogle Scholar
  56. Krivova, N. A., Solanki, S. K., & Unruh, Y. C. (2011b). Towards a long-term record of solar total and spectral irradiance. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 223–234. doi: 10.1016/j.jastp.2009.11.013. CrossRefGoogle Scholar
  57. Kurucz, R. (1993). ATLAS9 stellar atmosphere programs and 2 km/s grid. In ATLAS9 stellar atmosphere programs and 2 km/s grid. Cambridge: Smithsonian Astrophysical Observatory. Kurucz CD-ROM No. 13. Google Scholar
  58. Langematz, U., Matthes, K., & Grenfell, J. L. (2005). Solar impact on climate: modeling the coupling between the middle and the lower atmosphere. Memorie Della Società Astronomica Italiana, 76, 868–875. Google Scholar
  59. Lean, J. (1989). Contribution of ultraviolet irradiance variations to changes in the sun’s total irradiance. Science, 244, 197–200. CrossRefGoogle Scholar
  60. Lean, J., Skumanich, A., & White, O. (1992). Estimating the sun’s radiative output during the Maunder minimum. Geophysical Research Letters, 19, 1595–1598. CrossRefGoogle Scholar
  61. Lean, J. L., Rottman, G. J., Kyle, H. L., Woods, T. N., Hickey, J. R., & Puga, L. C. (1997). Detection and parameterization of variations in solar mid- and near-ultraviolet radiation (200–400 nm). Journal of Geophysical Research, 102, 29939–29956. CrossRefGoogle Scholar
  62. Lockwood, M., Rouillard, A. P., & Finch, I. D. (2009). The rise and fall of open solar flux during the current grand solar maximum. The Astrophysical Journal, 700, 937–944. doi: 10.1088/0004-637X/700/2/937. CrossRefGoogle Scholar
  63. Matthes, K., Kuroda, Y., Kodera, K., & Langematz, U. (2006). Transfer of the solar signal from the stratosphere to the troposphere: northern winter. Journal of Geophysical Research, 111, D06108. doi: 10.1029/2005JD006283. CrossRefGoogle Scholar
  64. Mendoza, B. (1997). Estimations of Maunder minimum solar irradiance and Ca II H and K fluxes using rotation rates and diameters. The Astrophysical Journal, 483, 523–526. CrossRefGoogle Scholar
  65. Morrill, J. S., Floyd, L., & McMullin, D. (2011). The solar ultraviolet spectrum estimated using the Mg II index and Ca II K disk activity. Solar Physics, 269, 253–267. doi: 10.1007/s11207-011-9708-7. CrossRefGoogle Scholar
  66. Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitmann, D., & Matter, A. (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411, 290–293. CrossRefGoogle Scholar
  67. Pagaran, J., Weber, M., & Burrows, J. (2009). Solar variability from 240 to 1750 nm in terms of faculae brightening and sunspot darkening from SCIAMACHY. The Astrophysical Journal, 700, 1884–1895. doi: 10.1088/0004-637X/700/2/1884. CrossRefGoogle Scholar
  68. Preminger, D. G., Walton, S. R., & Chapman, G. A. (2002). Photometric quantities for solar irradiance modeling. Journal of Geophysical Research, 107(A11), 1354. doi: 10.1029/2001JA009169. CrossRefGoogle Scholar
  69. Reid, G. C. (1987). Influence of solar variability on global sea surface temperatures. Nature, 329, 142–143. CrossRefGoogle Scholar
  70. Rozanov, E. V., Schlesinger, M. E., Egorova, T. A., Li, B., Andronova, N., & Zubov, V. A. (2004). Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate—chemistry model. Journal of Geophysical Research, 109, D1. doi: 10.1029/2003JD003796. Google Scholar
  71. Scafetta, N., & Willson, R. C. (2009). ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophysical Research Letters, 36, L05701. doi: 10.1029/2008GL036307. CrossRefGoogle Scholar
  72. Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., & Vieira, L. E. A. (2011). Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geoscientific Model Development, 4, 33–45. doi: 10.5194/gmd-4-33-2011. CrossRefGoogle Scholar
  73. Schrijver, C. J., Livingston, W. C., Woods, T. N., & Mewaldt, R. A. (2011). The minimal solar activity in 2008–2009 and its implications for long-term climate modeling. Geophysical Research Letters, 38, L06701. doi: 10.1029/2011GL046658. CrossRefGoogle Scholar
  74. Seleznyov, A. D., Solanki, S. K., & Krivova, N. A. (2011). Modelling solar irradiance variability on time scales from minutes to months. Astronomy & Astrophysics, 532, A108. CrossRefGoogle Scholar
  75. Shapiro, A. I., Schmutz, W., Schoell, M., Haberreiter, M., & Rozanov, E. (2010). NLTE solar irradiance modeling with the COSI code. Astronomy & Astrophysics, 517, A48. doi: 10.1051/0004-6361/200913987. CrossRefGoogle Scholar
  76. Shapiro, A. I., Schmutz, W., Rozanov, E., Schoell, M., Haberreiter, M., Shapiro, A. V., & Nyeki, S. (2011). A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astronomy & Astrophysics, 529, A67. doi: 10.1051/0004-6361/201016173. CrossRefGoogle Scholar
  77. Skupin, J., Noël, S., Wuttke, M. W., Gottwald, M., Bovensmann, H., Weber, M., & Burrows, J. P. (2005). SCIAMACHY solar irradiance observation in the spectral range from 240 to 2380 nm. Advances in Space Research, 35, 370–375. CrossRefGoogle Scholar
  78. Solanki, S. K., Schüssler, M., & Fligge, M. (2000). Evolution of the Sun’s large-scale magnetic field since the Maunder minimum. Nature, 408, 445–447. CrossRefGoogle Scholar
  79. Solanki, S. K., Schüssler, M., & Fligge, M. (2002). Secular variation of the Sun’s magnetic flux. Astronomy & Astrophysics, 383, 706–712. CrossRefGoogle Scholar
  80. Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., & Beer, J. (2004). Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 431, 1084–1087. CrossRefGoogle Scholar
  81. Solanki, S. K., Krivova, N. A., & Wenzler, T. (2005). Irradiance models. Advances in Space Research, 35, 376–383. CrossRefGoogle Scholar
  82. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., & Miller, H. L. (Eds.) (2007). Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. Google Scholar
  83. Soon, W. H., Posmentier, E. S., & Baliunas, S. L. (1996). Inference of solar irradiance variability from terrestrial temperature changes, 1880–1993: an astrophysical application of the sun-climate connection. The Astrophysical Journal, 472, 891–902. doi: 10.1086/178119. CrossRefGoogle Scholar
  84. Steinhilber, F. (2010). Total solar irradiance since 1996: is there a long-term variation unrelated to solar surface magnetic phenomena? Astronomy & Astrophysics, 523, A39. CrossRefGoogle Scholar
  85. Steinhilber, F., Beer, J., & Fröhlich, C. (2009). Total solar irradiance during the Holocene. Geophysical Research Letters, 36. doi: 10.1029/2009GL040142.
  86. Unruh, Y. C., Solanki, S. K., & Fligge, M. (1999). The spectral dependence of facular contrast and solar irradiance variations. Astronomy & Astrophysics, 345, 635–642. Google Scholar
  87. Unruh, Y. C., Krivova, N. A., Solanki, S. K., Harder, J. W., & Kopp, G. (2008). Spectral irradiance variations: comparison between observations and the SATIRE model on solar rotation time scales. Astronomy & Astrophysics, 486, 311–323. CrossRefGoogle Scholar
  88. Usoskin, I. G., Solanki, S. K., & Korte, M. (2006a). Solar activity reconstructed over the last 7000 years: the influence of geomagnetic field changes. Geophysical Research Letters, 33, L08103. doi: 10.1029/2006GL025921. CrossRefGoogle Scholar
  89. Usoskin, I. G., Solanki, S. K., Taricco, C., Bhandari, N., & Kovaltsov, G. A. (2006b). Long-term solar activity reconstructions: direct test by cosmogenic 44Ti in meteorites. Astronomy & Astrophysics, 457, L25–L28. CrossRefGoogle Scholar
  90. Vieira, L. E. A., & Solanki, S. K. (2010). Evolution of the solar magnetic flux on time scales of years to millennia. Astronomy & Astrophysics, 509, A100. doi: 10.1051/0004-6361/200913276. CrossRefGoogle Scholar
  91. Vieira, L. E. A., Solanki, S. K., Krivova, N. A., & Usoskin, I. (2011). Evolution of the solar irradiance during the Holocene. Astronomy & Astrophysics, 531, A6. doi: 10.1051/0004-6361/201015843. CrossRefGoogle Scholar
  92. Wang, Y.-M., Lean, J. L., & Sheeley, N. R. (2005). Modeling the Sun’s magnetic field and irradiance since 1713. The Astrophysical Journal, 625, 522–538. doi: 10.1086/429689. CrossRefGoogle Scholar
  93. Wenzler, T., Solanki, S. K., Krivova, N. A., & Fluri, D. M. (2004). Comparison between KPVT/SPM and SoHO/MDI magnetograms with an application to solar irradiance reconstructions. Astronomy & Astrophysics, 427, 1031–1043. CrossRefGoogle Scholar
  94. Wenzler, T., Solanki, S. K., & Krivova, N. A. (2005). Can surface magnetic fields reproduce solar irradiance variations in cycles 22 and 23? Astronomy & Astrophysics, 432, 1057–1061. CrossRefGoogle Scholar
  95. Wenzler, T., Solanki, S. K., Krivova, N. A., & Fröhlich, C. (2006). Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astronomy & Astrophysics, 460, 583–595. CrossRefGoogle Scholar
  96. Wenzler, T., Solanki, S. K., & Krivova, N. A. (2009). Reconstructed and measured total solar irradiance: is there a secular trend between 1978 and 2003? Geophysical Research Letters, 36, L11102. doi: 10.1029/2009GL037519. CrossRefGoogle Scholar
  97. Willson, R. C., & Mordvinov, A. V. (2003). Secular total solar irradiance trend during solar cycles 21–23. Geophysical Research Letters, 30, 1199. doi: 10.1029/2002GL016038. CrossRefGoogle Scholar
  98. Willson, R. C., Gulkis, S., Janssen, M., Hudson, H. S., & Chapman, G. A. (1981). Observations of solar irradiance variability. Science, 211, 700–702. CrossRefGoogle Scholar
  99. Woods, T. N., Tobiska, W. K., Rottman, G. J., & Worden, J. R. (2000). Improved solar Lyman-α irradiance modeling from 1947 through 1999 based on UARS observations. Journal of Geophysical Research, 105(A12), 27195–27215. CrossRefGoogle Scholar
  100. Wright, J. T. (2004). Do we know of any Maunder minimum stars? The Astronomical Journal, 128, 1273–1278. CrossRefGoogle Scholar
  101. Zhang, Q., Soon, W. H., Baliunas, S. L., Lockwood, G. W., Skiff, B. A., & Radick, R. R. (1994). A method of determining possible brightness variations of the Sun in past centuries from observations of solar-type stars. The Astrophysical Journal Letters, 427, L111–L114. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  2. 2.School of Space ResearchKyung Hee UniversityGyeonggiKorea

Personalised recommendations