Charged Aerosol Effects on the Scattering of Radar Waves from the D-Region

  • Markus RappEmail author
  • Irina Strelnikova
  • Qiang Li
  • Norbert Engler
  • Georg Teiser
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Charged aerosol particles are an important contributor to the D-region charge balance and affect the scattering of radar waves. Among these particles are meteoric smoke particles (MSP) which occur at all D-region altitudes and all seasons, and mesospheric ice particles whose occurrence is confined to altitudes of ∼80–90 km at polar latitudes during summer. We argue that it is the modification of electron diffusion by the heavy charged aerosol particles which is the prime effect leading to clearly detectable signatures in both incoherent and coherent radar backscatter. In the case of incoherent scatter, it is shown that the presence of charged aerosol particles modifies the incoherent scatter spectrum. Corresponding observations with the EISCAT UHF radar and the Arecibo radar have been used to detect both MSP and ice particles at D-region altitudes and characterize their radii and number densities. In the case of coherent scatter, it is argued that the modified diffusion properties of the D-region electrons lead to small scale structures at the radar Bragg wavelength due to turbulent mixing in combination with a large Schmidt number. To test this theory, calibrated echo strengths of polar mesosphere summer echoes have been measured with the EISCAT radars at Tromsø (69°N) and Svalbard (78°N) and collocated 53 MHz radars, thus covering frequencies of 53 MHz, 224 MHz, 500 MHz, and 933 MHz. Importantly, the vast majority of these observations show excellent agreement with the corresponding theoretical predictions thus providing strong support for this theory. This theory was subsequently applied to the same data sets in order to derive ice particle radii. Corresponding results are in excellent agreement with independent data sets from satellite-borne and ground-based optical observations. Finally, some suggestions for future investigations are given.


Aerosol Particle Volume Reflectivity Incoherent Scatter Radar Radar Echo Coherent Scatter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This project has been supported by DFG under grants RA 1400/2-1, RA 1400/2-2, and RA 1400/2-3 in the frame of the CAWSES priority program. Fruitful discussions and collaborations with J. Röttger, S. Raizada, M. Sulzer, S. Gonzales, D. Janches, and J. Fentzke are gratefully acknowledged. EISCAT is an international association supported by research organizations in China (CRIRP), Finland (SA), France (CNRS, till end of 2006), Germany (DFG, formerly MPG), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (PPARC).


  1. Balsley, B. B., Ecklund, W. L., & Fritts, D. C. (1983). VHF echoes form the high-latitude mesosphere and lower thermosphere: observations and interpretations. Journal of the Atmospheric Sciences, 40, 2451–2466. CrossRefGoogle Scholar
  2. Baron, M. (1986). EISCAT progress 1983–1985. Journal of Atmospheric and Terrestrial Physics, 48, 767–772. CrossRefGoogle Scholar
  3. Batchelor, G. K. (1959). Small-scale variation of convected quantities like temperature in a turbulent fluid. Journal of Fluid Mechanics, 5, 113–133. CrossRefGoogle Scholar
  4. Bauer, S. J. (1973). Physics of planetary ionospheres. Berlin: Springer. CrossRefGoogle Scholar
  5. Baumgarten, G., Fielder, J., Lübken, F.-J., & von Cossart, G. (2008). Particle properties and water content of noctilucent clouds and their interannual variation. Journal of Geophysical Research, 113, D06203. doi: 10.1029/2007JD008884. CrossRefGoogle Scholar
  6. Blix, T. A., Rapp, M., & Lübken, F.-J. (2003). Relations between small scale electron number density fluctuations, radar backscatter and charged aerosol particles. Journal of Geophysical Research, 108(D8), 8450. doi: 10.1029/2002JD002430. CrossRefGoogle Scholar
  7. Bowles, K. L. (1958). Observations of vertical incidence scatter from the ionosphere at 41 Mc/s. Physical Review Letters, 1, 454–455. CrossRefGoogle Scholar
  8. Cho, J. Y., Sulzer, M. P., & Kelley, M. C. (1998). Meteoric dust effects on D-region incoherent scatter radar spectra. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 349–357. CrossRefGoogle Scholar
  9. Cho, J. Y. N., & Röttger, J. (1997). An updated review of polar mesosphere summer echoes: observation, theory, and their relationship to noctilucent clouds and subvisible aerosols. Journal of Geophysical Research, 102, 2001–2020. CrossRefGoogle Scholar
  10. Cho, J. Y. N., Hall, T. M., & Kelley, M. C. (1992). On the role of charged aerosols in polar mesosphere summer echoes. Journal of Geophysical Research, 97, 875–886. CrossRefGoogle Scholar
  11. DeLand, M. T., Shettle, E. P., Thomas, G. E., & Olivero, J. J. (2006). A quarter-century of satellite polar mesospheric cloud observations. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 9–29. CrossRefGoogle Scholar
  12. DeLand, M. T., Shettle, E. P., Thomas, G. E., & Olivero, J. J. (2007). Latitude-dependent long-term variations in polar mesospheric clouds from SBUV version 3 PMC data. Journal of Geophysical Research, 112, D10315. doi: 10.1029/2006JD007857. CrossRefGoogle Scholar
  13. Dougherty, J. P., & Farley, D. T. (1963). A theory of incoherent scattering of radio waves by a plasma: 3. Scattering in a partly ionized gas. Journal of Geophysical Research, 68, 5473–5486. CrossRefGoogle Scholar
  14. Fentzke, J., Janches, D., Strelnikova, I., & Rapp, M. (2009). Meteoric smoke particle properties derived using dual-beam Arecibo UHF observations of D-region spectra during different seasons. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1982–1991. CrossRefGoogle Scholar
  15. Folkestad, K. T., Hagfors, T., & Westerlund, S. (1983). EISCAT: an updated description of technical characteristics and operational capabilities. Radio Science, 18, 867–879. CrossRefGoogle Scholar
  16. Gabrielli, P., Barbante, C., Plane, J. M. C., Varga, A., Hong, S., Cozzi, G., Gasparia, V., Planchon, F. A. M., Cairns, W., Ferrari, C., Crutzen, P., Ceson, P., & Boutron, C. F. (2004). Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature, 432, 1011–1014. CrossRefGoogle Scholar
  17. Gordon, W. E. (1958). Incoherent scattering by free electrons with applications to space exploration by radars. Proceedings of the IRE, 46, 1824–1829. CrossRefGoogle Scholar
  18. Hervig, M. E., Gordley, L. L., Stevens, J. M. R. III, Bailey, S. M., & Baumgarten, G. (2009). Interpretation of SOFIE PMC measurements: cloud identification and derivation of mass density, particle shape, and particle size. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 316–330. CrossRefGoogle Scholar
  19. Hill, R. J. (1978). Nonneutral and quasi-neutral diffusion of weakly ionized multiconstituent plasma. Journal of Geophysical Research, 83, 989–998. CrossRefGoogle Scholar
  20. Hocking, W. (2011). A review of mesosphere-stratosphere-troposphere (MST) radar developments and studies, circa 1997–2008. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 848–882. CrossRefGoogle Scholar
  21. Hocking, W. K. (1985). Measurement of turbulent energy dissipation rates in the middle atmosphere by radar techniques: a review. Radio Science, 20, 1403–1422. CrossRefGoogle Scholar
  22. Hoppe, U.-P., & Fritts, D. C. (1995). High resolution measurements of vertical velocity with the European incoherent scatter VHF radar 1. Motion field characteristics and measurement biases. Journal of Geophysical Research, 100, 16813–16825. CrossRefGoogle Scholar
  23. Hunten, D. M., Turco, R. P., & Toon, O. B. (1980). Smoke and dust particles of meteoric origin in the mesosphere and stratosphere. Journal of the Atmospheric Sciences, 37, 1342–1357. CrossRefGoogle Scholar
  24. Jackel, B. J. (2005). Characterization of auroral radar power spectra and autocorrelation functions. Radio Science, 35, 1009–1032. CrossRefGoogle Scholar
  25. Janches, D., Fritts, D. C., Riggin, D. M., Sulzer, M. P., & Gonzales, S. (2006). Gravity wave and momentum fluxes in the mesosphere and lower thermosphere using 430 MHz dual-beam measurements at Arecibo: 1. Measurements, methods, and gravity waves. Journal of Geophysical Research, 111, D18107. doi: 10.1029/2005JD006882. CrossRefGoogle Scholar
  26. Kelley, M. C., Farley, D. T., & Röttger, J. (1987). The effect of cluster ions on anomalous VHF backscatter from the summer polar mesosphere. Geophysical Research Letters, 14, 1031–1034. CrossRefGoogle Scholar
  27. La Hoz, C., & Havnes, O. (2008). Artificial modification of polar mesospheric winter echoes with an RF heater: do charged dust particles play an active role? Journal of Geophysical Research, 113, D19205. doi: 10.1029/2008JD010460. CrossRefGoogle Scholar
  28. Latteck, R., Singer, W., & Bardey, H. (1999). The ALWIN MST radar: technical design and performance. In Proceedings of the 14th ESA symposium on European rocket and balloon programmes and related research, Potsdam, Germany (ESA SP-437) (pp. 179–184). Google Scholar
  29. Li, Q., & Rapp, M. (2011). PMSE-observations with the EISCAT VHF and UHF-radars: statistical results. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 944–956. CrossRefGoogle Scholar
  30. Li, Q., Rapp, M., Röttger, J., Latteck, R., Zecha, M., Strelnikova, I., Baumgarten, G., Hervig, M., Hall, C., & Tsutsumi, M. (2010). Microphysical parameters of mesospheric ice clouds derived from calibrated observations of polar mesosphere summer echoes at Bragg wavelengths of 2.8 m and 30 cm. J. Geophys. Res., D00I13. doi: 10.1029/2009JD012271.
  31. Lübken, F.-J. (1999). Thermal structure of the Arctic summer mesosphere. Journal of Geophysical Research, 104, 9135–9149. Google Scholar
  32. Lübken, F.-J., Rapp, M., Blix, T., & Thrane, E. (1998). Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes. Geophysical Research Letters, 25, 893–896. CrossRefGoogle Scholar
  33. Lübken, F.-J., Singer, W., Latteck, R., & Strelnikova, I. (2007). Radar measurements of turbulence, electron densities, and absolute reflectivities during polar mesosphere winter echoes (PMWE). Advances in Space Research, 40, 758–764. doi: 10.1016/j.asr.2007.01.015. CrossRefGoogle Scholar
  34. Mathews, J. D. (1978). The effect of negative ions on collision-dominated Thomson scattering. Journal of Geophysical Research, 83, 505–512. CrossRefGoogle Scholar
  35. Megner, L., Siskind, D. E., Rapp, M., & Gumbel, J. (2008). Global and temporal distribution of meteoric smoke: a two-dimensional simulation study. Journal of Geophysical Research, 113, D03202. doi: 10.1029/2007JD009054. CrossRefGoogle Scholar
  36. Merkel, A. W., THomas, G. E., Palo, S. E., & Bailey, S. (2003). Observations of the 5-day planetary wave in PMC measurements from the Student Nitric Oxide Explorer satellite. Geophysical Research Letters, 30, 1196. doi: 10.1029/2002GL016524. CrossRefGoogle Scholar
  37. Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparison and scientific issues. Journal of Geophysical Research, 107(A12), 1468. doi: 10.1029/2002JA009430. CrossRefGoogle Scholar
  38. Rapp, M. (2009). Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles. Annales Geophysicae, 27, 2417–2422. CrossRefGoogle Scholar
  39. Rapp, M., & Lübken, F.-J. (2003). On the nature of PMSE: electron diffusion in the vicinity of charged particles revisited. Journal of Geophysical Research, 108(D8), 8437. doi: 10.1029/2002JD002857. CrossRefGoogle Scholar
  40. Rapp, M., & Lübken, F.-J. (2004). Polar mesosphere summer echoes (PMSE): review of observations and current understanding. Atmospheric Chemistry and Physics, 4, 2601–2633. CrossRefGoogle Scholar
  41. Rapp, M., & Thomas, G. E. (2006). Modeling the microphysics of mesospheric ice particles: assessment of current capabilities and basic sensitivities. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 715–744. CrossRefGoogle Scholar
  42. Rapp, M., Strelnikova, I., & Gumbel, J. (2007). Meteoric smoke particles: evidence from rocket and radar techniques. Advances in Space Research, 40, 809–817. doi: 10.1016/j.asr.2006.11.021. CrossRefGoogle Scholar
  43. Rapp, M., Strelnikova, I., Latteck, R., Hoffman, P., Hoppe, U.-P., Häggström, I., & Rietveld, M. (2008). Polar mesosphere summer echoes (PMSE) studied at Bragg wavelengths of 2.8 m, 67 cm, and 16 cm. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 947–961. CrossRefGoogle Scholar
  44. Rapp, M., Strelnikova, I., Strelnikov, B., Hoffmann, P., Friedrich, M., Gumbel, J., Megner, L., Hoppe, U.-P., Robertson, S., Knappmiller, S., Wolff, M., & Marsh, D. R. (2010). Rocket-borne in-situ measurements of meteor smoke: charging properties and implications for seasonal variation. Journal of Geophysical Research, D00I16. doi: 10.1029/2009JD012377.
  45. Röttger, J. (2001). Observations of the polar D-region and the mesosphere with the EISCAT Svalbard Radar and the SOUSY Svalbard Radar. Memoirs of National Institute of Polar Research, 54, 9–20. Google Scholar
  46. Shettle, E. P., DeLand, M. T., Thomas, G. E., & Olivero, J. J. (2009). Long term variations in the frequency of polar mesospheric clouds in the northern hemisphere from SBUV. Geophysical Research Letters, 36, L02803. doi: 10.1029/2008GL036048. CrossRefGoogle Scholar
  47. Stevens, M. H., Siskind, D. E., Eckermann, S. D., Coy, L., McCormack, J. P., Englert, C. R., Hoppel, K. W., Nielsen, K., Kochenash, A. J., Hervig, M. E., Randall, C. E., Lumpe, J., Bailey, S. M., Rapp, M., & Hoffmann, P. (2010). Tidally induced variations of polar mesospheric cloud altitudes and ice water content using a data assimilation system. Journal of Geophysical Research, 115, D18209. doi: 10.1029/2009JD013225. CrossRefGoogle Scholar
  48. Strelnikova, I., & Rapp, M. (2010). Studies of polar mesosphere summer echoes with the EISCAT VHF and UHF radars: Information contained in the spectral shape. Advances in Space Research, 45, 247–259. CrossRefGoogle Scholar
  49. Strelnikova, I., & Rapp, M. (2011). Majority of PMSE spectral widths at UHF and VHF are compatible with a single scattering mechanism. Journal of Atmospheric and Solar-Terrestrial Physics doi: 10.1016/j.jastp.2010.11.025. Google Scholar
  50. Strelnikova, I., Rapp, M., Raizada, S., & Sulzer, M. (2007). Meteor smoke particle properties derived from Arecibo incoherent scatter radar observations. Geophysical Research Letters, 34, L15815. doi: 10.1029/2007GL030635. CrossRefGoogle Scholar
  51. Tanenbaum, B. S. (1968). Continuum theory of Thomson scattering. Physical Review, 171, 215–221. CrossRefGoogle Scholar
  52. Tatarskii, V. I. (1961). Wave propagation in a turbulent medium. New York: McGraw-Hill. Google Scholar
  53. Thomas, G. E., Olivero, J. J., Jensen, E. J., Schröder, W., & Toon, O. B. (1989). Relation between increasing methane and the presence of ice clouds at the mesopause. Nature, 338, 490–492. CrossRefGoogle Scholar
  54. Thomas, G. E., Olivero, J. J., DeLand, M., & Shettle, E. P. (2003). A response to the article by U. von Zahn, “Are noctilucent clouds truly a miner’s canary of global change? Eos, Transactions, American Geophysical Union, 84(36), 352–353. CrossRefGoogle Scholar
  55. Voigt, C., Schlager, H., Luo, B. P., Dörnbrack, A., Roiger, A., Stock, P., Curtius, J., Vössing, H., Borrmann, S., Davies, S., Konopka, P., Schiller, C., Shur, G., & Peter, T. (2005). Nitric acid trihydrate (NAT) formation at low NAT supersaturation in polar stratospheric clouds (PSCs). Atmospheric Chemistry and Physics, 5, 1371–1380. CrossRefGoogle Scholar
  56. von Savigny, C., Sinnhuber, M., Bovensmann, H., Burrows, J. P., Kallenrode, M.-B., & Schwartz, M. (2007). On the disappearance of noctilucent clouds during the January 2005 solar proton events. Geophysical Research Letters, 34, L02805. doi: 10.1029/2006GL028106. CrossRefGoogle Scholar
  57. von Zahn, U. (2003). Are noctilucent clouds truly a “miner’s canary” of global change? Eos, Transactions, American Geophysical Union, 84(28), 261–268. CrossRefGoogle Scholar
  58. Wannberg, U. G., Wolf, I., Vanheinen, L. G., Koskeniemi, K., Röttger, J., et al. (1997). The EISCAT Svalbard radar: a case study in modern incoherent scatter radar design. Radio Science, 32, 2283–2307. CrossRefGoogle Scholar
  59. Woodman, R. F., & Guillen, A. (1974). Radar observations of winds and turbulence in the stratosphere and mesosphere. Journal of the Atmospheric Sciences, 31, 493–505. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Markus Rapp
    • 1
    • 2
    Email author
  • Irina Strelnikova
    • 1
  • Qiang Li
    • 1
  • Norbert Engler
    • 1
  • Georg Teiser
    • 1
  1. 1.Leibniz-Institute of Atmospheric Physics at the Rostock UniversityKühlungsbornGermany
  2. 2.Deutsches Zentrum für Luft- und Raumfahrt (DLR)Institute of Atmospheric PhysicsWesslingGermany

Personalised recommendations