Advertisement

Solar Variability and Trend Effects in Mesospheric Ice Layers

  • Franz-Josef Lübken
  • Uwe Berger
  • Johannes Kiliani
  • Gerd Baumgarten
  • Jens Fiedler
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

In this paper we summarize results from the SOLEIL project (SOLar variability and trend Effects in Ice Layers) which was part of the CAWSES priority program in Germany. We present results from LIMA/ICE which is a global circulation model concentrating on ice clouds (NLC, noctilucent clouds) in the summer mesopause region. LIMA/ICE adapts to ECMWF data in the lower atmosphere which produces significant short term and year-to-year variability. The mean ice cloud parameters derived from LIMA/ICE generally agree with observations. The formation, transport, and sublimation of ice particles causes a significant redistribution of water vapor (‘freeze drying’). Model results are now available for all years since 1961 for various scenarios, e.g., with and without greenhouse gas increase etc. Temperatures and water vapor are affected by solar activity. In general it is warmer during solar maximum, but there is a small height region around the mesopause where it is colder. This complicates the prediction of solar cycle effects on ice layers. The magnitude of the solar cycle effect is ∼1–3 K which is similar to the year-to-year variability. Therefore, only a moderate solar cycle signal is observed in temperatures and in ice layers. Temperature trends at NLC altitudes are partly caused by stratospheric trends (‘shrinking effect’). Trends are generally negative, but are positive in the mesopause region. Again, this complicates a simple prediction of temperature trends on ice layers and requires a complex model like LIMA/ICE. Trends in CO2 and stratospheric O3 enhance mesospheric temperature trends but have comparatively small effects in the ice regime. Comparison of contemporary and historic observations of NLC altitudes leads to negligible temperature trends at NLC altitudes (∼83 km). For the time period of satellite measurements (1979–2009) LIMA/ICE predicts trends in ice cloud brightness and occurrence rates, consistent with observations. Temperature trends are not uniform in time but are stronger until the mid 1990s, and weaker thereafter. This change is presumably related to stratospheric ozone recovery. The accidental coincidence of lowest temperatures and solar cycle minimum in the mid 1990s led to large NLC activity. It is important to consider the time period and the height range when studying temperature and ice cloud trends. In the mesosphere temperature trends can be as large as −(3–5) K/decade (in agreement with observations) or rather small, depending on the time period and height range.

Keywords

Solar Cycle Temperature Trend Middle Atmosphere Water Vapor Concentration Backscatter Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We appreciate the continuing financial support from the DFG for the SOLEIL project. The European Centre for Medium-Range Weather Forecasts (ECMWF) is gratefully acknowledged for providing ERA-40 and operational analysis data. Several students have spent a considerable time at the ALOMAR observatory for making measurements. FJL thanks Mrs Rosenthal for her technical support in chairing the CAWSES priority program.

References

  1. Akmaev, R. A., Fomichev, V. I., & Zhu, X. (2006). Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 1879–1889. CrossRefGoogle Scholar
  2. Baumgarten, G., & Fiedler, J. (2008). Vertical structure of particle properties and water content in noctilucent clouds. Geophysical Research Letters, 35, L10811. doi: 10.1029/2007GL033084. CrossRefGoogle Scholar
  3. Berger, U. (2008). Modeling of middle atmosphere dynamics with LIMA. Journal of Atmospheric and Solar-Terrestrial Physics, 1170–1200. doi: 10.1016/j.jastp.2008.02.004.
  4. Berger, U., & Lübken, F.-J. (2011). Mesospheric temperature trends at mid-latitudes in summer. Geophysical Research Letters, 38, L22804. doi: 10.1029/2011GL049528. CrossRefGoogle Scholar
  5. DeLand, M. T., Shettle, E. P., Thomas, G. E., & Olivero, J. J. (2003). Solar backscattered ultraviolet (SBUV) observations of polar mesospheric clouds (PMCs) over two solar cycles. Journal of Geophysical Research, 108(D8), 8445. doi: 10.1029/2002JD002398. CrossRefGoogle Scholar
  6. DeLand, M. T., Shettle, E. P., Thomas, G. E., & Olivero, J. J. (2007). Latitude-dependent long-term variations in polar mesospheric clouds from SBUV version 3 PMC data. Journal of Geophysical Research, 112(D10), D10315. doi: 10.1029/2006JD007857. CrossRefGoogle Scholar
  7. Fiedler, J., Baumgarten, G., Berger, U., Hoffmann, P., Kaifler, N., & Lübken, F.-J. (2011). NLC and the background atmosphere above ALOMAR. ACP, 5701–5717. doi: 10.5194/acp-11-5701-2011.
  8. Fortuin, J. P., & Kelder, H. (1998). An ozone climatology based on ozonesonde and satellite measurements. Journal of Geophysical Research, 103, 31709–31734. CrossRefGoogle Scholar
  9. Garcia, R. R., Marsh, D. R., Kinnson, D. E., Boville, B. A., & Sassi, F. (2007). Simulation of secular trends in the middle atmosphere, 1950–2003. Journal of Geophysical Research, 112, D09301. doi: 10.1029/2006JD007485. CrossRefGoogle Scholar
  10. Gleisner, H., Thejll, P., Stendel, M., Kaas, E., & Machenhauer, B. (2005). Solar signals in tropospheric re-analysis data: comparing NCEP/NCAR and ERA40. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 785–791. doi: 10.1016/j.jastp.2005.02.001. CrossRefGoogle Scholar
  11. Grygalashvyly, M., Sonnemann, G., & Hartogh, P. (2009). Long-term behavior of the concentration of the minor constituents in the mesosphere—a model study. Atmospheric Chemistry and Physics, 9, 2779–2992. CrossRefGoogle Scholar
  12. Hartogh, P., Sonnemann, G. R., Li, S., Grygalashvyly, M., Berger, U., & Lübken, F.-J. (2010). Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA. Journal of Geophysical Research, 115, D00I17. doi: 10.1029/2009JD012364. CrossRefGoogle Scholar
  13. Hervig, M., & Siskind, D. (2006). Decadal and inter-hemispheric variability in polar mesospheric clouds, water vapor, and temperature. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 30–41. CrossRefGoogle Scholar
  14. Jesse, O. (1896). Die Höhe der leuchtenden Nachtwolken. Astronomische Nachrichten, 140, 161–168. CrossRefGoogle Scholar
  15. Jones, O., et al. (2009). Evolution of stratospheric ozone and water vapour time series studied with satellite measurements. Atmospheric Chemistry and Physics, 9, 6055–6075. CrossRefGoogle Scholar
  16. Keckhut, P., Cagnazzo, C., Chanin, M.-L., Claud, C., & Hauchecorne, A. (2005). The 11-year solar-cycle effects on the temperature in the upper-stratosphere and mesosphere: Part I—Assessment of observations. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 940–947. CrossRefGoogle Scholar
  17. Keckhut, P., et al. (2011). An evaluation of uncertainties in monitoring middle atmosphere temperatures with the ground-based Lidar network in support of space observations. Journal of Atmospheric and Solar-Terrestrial Physics. doi: 10.1016/j.jastp.2011.01.003. Google Scholar
  18. Kirkwood, S., Dalin, P., & Réchou, A. (2008). Noctilucent clouds observed from the UK and Denmark—trends and variations over 43 years. Annals of Geophysics, 26, 1243–1254. CrossRefGoogle Scholar
  19. Lübken, F.-J., & Berger, U. (2007). Interhemispheric comparison of mesospheric ice layers from the LIMA model. Journal of Atmospheric and Solar-Terrestrial Physics, 69(17–18), 2292–2308. doi: 10.1016/j.jastp.2007.07.006. CrossRefGoogle Scholar
  20. Lübken, F.-J., & Berger, U. (2011). Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends. Journal of Geophysical Research, 116, D00P03. doi: 10.1029/2010JD015258. CrossRefGoogle Scholar
  21. Lübken, F.-J., & Höffner, J. (2004). Experimental evidence for ice particle interaction with metal atoms at the high latitude summer mesopause region. Geophysical Research Letters, 31(8), L08103. doi: 10.1029/2004GL019586. CrossRefGoogle Scholar
  22. Lübken, F.-J., Baumgarten, G., Fiedler, J., Gerding, M., Höffner, J., & Berger, U. (2008). Seasonal and latitudinal variation of noctilucent cloud altitudes. Geophysical Research Letters, 35, L06801. doi: 10.1029/2007GL032281. CrossRefGoogle Scholar
  23. Lübken, F.-J., Berger, U., & Baumgarten, G. (2009). Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds. Journal of Geophysical Research, 114, D00106. doi: 10.1029/2009JD012377. CrossRefGoogle Scholar
  24. Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 112, D23306. doi: 10.1029/2006JD008306. CrossRefGoogle Scholar
  25. Plane, J., Murray, B., Chu, X., & Gardner, C. (2004). Removal of meteoric iron on polar mesosphere clouds. Science, 304, 426–428. CrossRefGoogle Scholar
  26. Randel, W. J., et al. (2009). An update of observed stratospheric temperature trends. Journal of Geophysical Research, 114, D02107. doi: 10.1029/2008JD010421. CrossRefGoogle Scholar
  27. Rapp, M., & Thomas, G. E. (2006). Modeling the microphysics of mesospheric ice particles: assessment of current capabilities and basic sensitivities. Journal of Atmospheric and Solar-Terrestrial Physics, 68, 715–744. CrossRefGoogle Scholar
  28. Russell, J. M., et al. (2009). The aeronomy of ice in the mesosphere (AIM) mission: overview and early science results. Journal of Atmospheric and Solar-Terrestrial Physics, 71. doi: 10.1016/j.jastp.2008.08.011.
  29. Schmidt, H., Brasseur, G. P., & Giorgetta, M. A. (2010). Solar cycle signal in a general circulation and chemistry model with internally generated quasi-biennal oscillation. Journal of Geophysical Research, 115, D00114. doi: 10.1029/2009JD012542. Google Scholar
  30. Shettle, E. P., DeLand, M. T., Thomas, G. E., & Olivero, J. J. (2009). Long term variations in the frequency of polar mesospheric clouds in the Northern Hemispheric from SBUV. Geophysical Research Letters, 36, L02803. doi: 10.1029/2008GL036048. CrossRefGoogle Scholar
  31. Smith, A. K., Garcia, R. R., Marsh, D. R., Kinnison, D. E., & Richter, J. H. (2010). Simulations of the response of mesospheric circulation and temperature to the Antarctic ozone hole. Geophysical Research Letters, 37, L22803. doi: 10.1029/10GL045255. CrossRefGoogle Scholar
  32. Summers, M. E., Conway, R. R., Englert, C., Siskind, D. E., Stevens III, M. J. R., Gordley, L., & McHugh, M. (2001). Discovery of a layer of enhanced water vapor in the arctic summer mesosphere: implications for polar mesospheric clouds. Geophysical Research Letters, 28, 3601–3604. CrossRefGoogle Scholar
  33. Thomas, G., Olivero, J., DeLand, M., & Shettle, E. (2003). Comment on ‘Are noctilucent clouds truly a miner’s canary for global change?’. EOS, 84(36), 352–353. CrossRefGoogle Scholar
  34. Thomas, G. E. (1995). Climatology of polar mesospheric clouds: interannual variability and implications for long-term trends. Geophysical Monograph, 87, 185–200. CrossRefGoogle Scholar
  35. Tsutsui, J., Nishizawa, K., & Sassi, F. (2009). Response of the middle atmosphere to the 11-year solar cycle simulated with the whole atmosphere community climate model. Journal of Geophysical Research, 114, D02111. doi: 10.1029/2008JD010316. CrossRefGoogle Scholar
  36. von Cossart, G., Fiedler, J., & von Zahn, U. (1999). Size distributions of NLC particles as determined from 3-color observations of NLC by ground-based lidar. Geophysical Research Letters, 26, 1513–1516. CrossRefGoogle Scholar
  37. von Savigny, C., Petelina, S. V., Karlsson, B., Llewellyn, E. J., Degenstein, D. A., Lloyd, N. D., & Burrows, J. P. (2005). Vertical variation of NLC particle sizes retrieved from Odin/OSIRIS limb scattering observations. Geophysical Research Letters, 32, L07806. doi: 10.1029/2004GL021982. CrossRefGoogle Scholar
  38. von Zahn, U. (2003). Are noctilucent clouds truly a ‘miner’s canary’ for global change? EOS, 84(28), 261–264. CrossRefGoogle Scholar
  39. von Zahn, U., Baumgarten, G., Berger, U., Fiedler, J., & Hartogh, P. (2004). Noctilucent clouds and the mesospheric water vapour: the past decade. Atmospheric Chemistry and Physics, 4, 2449–2464. CrossRefGoogle Scholar
  40. WMO (2011). Global ozone research and monitoring project (Report no. 52). Scientific assessment of ozone depletion: 2010, World Meteorological Organization. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Franz-Josef Lübken
    • 1
  • Uwe Berger
    • 1
  • Johannes Kiliani
    • 1
  • Gerd Baumgarten
    • 1
  • Jens Fiedler
    • 1
  1. 1.Leibniz-Institute of Atmospheric PhysicsKühlungsbornGermany

Personalised recommendations