Skip to main content

Simulation of Particle Precipitation Effects on the Atmosphere with the MESSy Model System

  • Chapter
Climate and Weather of the Sun-Earth System (CAWSES)

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Focusing on particle precipitation into the atmosphere we present whole-atmosphere model developments as well as scientific results using the Modular Earth Submodel System (MESSy). Parameterizations for Solar Proton Events as well as low-energy-electron precipitation are described and the implementation as MESSy submodels is outlined. Direct and indirect effects found in simulations using MESSy with the basemodel ECHAM5, a general circulation model, are discussed. As an additional development, the middle and upper atmosphere model CMAT2 was implemented as a MESSy basemodel and as a submodel for ECHAM5/MESSy to create a whole atmosphere model. This opens up new perspectives for particle precipitation modeling and some initial results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin, J., Tourpali, K., Rozanov, E., Akiyoshi, H., Bekki, S., Bodeker, G., Brühl, C., Butchart, N., Chipperfield, M., Deushi, M., Fomichev, V. I., Giorgetta, M. A., Gray, L., Kodera, K., Lott, F., Manzini, E., Marsh, D., Matthes, K., Nagashima, T., Shibata, K., Stolarski, R. S., Struthers, H., & Tian, W. (2008). Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. Journal of Geophysical Research, 113, D11306. doi:10.1029/2007JD009391.

    Article  Google Scholar 

  • Baldwin, M. P., & Dunkerton, T. J. (2001). Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584. doi:10.1126/science.1063315.

    Article  Google Scholar 

  • Baldwin, M. P., & Thompson, D. W. J. (2009). A critical comparison of stratosphere-troposphere coupling indices. Quarterly Journal of the Royal Meteorological Society, 135, 1661–1672. doi:10.1002/qj.479.

    Article  Google Scholar 

  • Baumgaertner, A. J. G., McDonald, A. J., Fraser, G. J., & Plank, G. E. (2005). Long-term observations of mean winds and tides in the upper mesosphere and lower thermosphere above Scott Base, Antarctica. Journal of Atmospheric and Solar-Terrestrial Physics, 67(16), 1480–1496. doi:10.1016/j.jastp.2005.07.018.

    Article  Google Scholar 

  • Baumgaertner, A. J. G., Jöckel, P., & Brühl, C. (2009). Energetic particle precipitation in ECHAM5/MESSy1—Part 1: downward transport of upper atmospheric NO x produced by low energy electrons. Atmospheric Chemistry and Physics, 9, 2729–2740. doi:10.5194/acp-9-2729-2009.

    Article  Google Scholar 

  • Baumgaertner, A. J. G., Jöckel, P., Riede, H., Stiller, G., & Funke, B. (2010a). Energetic particle precipitation in ECHAM5/MESSy—Part 2: solar proton events. Atmospheric Chemistry and Physics, 10, 7285–7302. doi:10.5194/acp-10-7285-2010.

    Article  Google Scholar 

  • Baumgaertner, A. J. G., Jöckel, P., Dameris, M., & Crutzen, P. J. (2010b). Will climate change increase ozone depletion from low-energy-electron precipitation? Atmospheric Chemistry and Physics, 10(19), 9647–9656. doi:10.5194/acp-10-9647-2010.

    Article  Google Scholar 

  • Baumgaertner, A. J. G., Seppälä, A., Jöckel, P., & Clilverd, M. A. (2011). Geomagnetic activity related NO x enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index. Atmospheric Chemistry and Physics, 11, 4521–4531. doi:10.5194/acp-11-4521-2011.

    Article  Google Scholar 

  • Brühl, C., Steil, B., Stiller, G., Funke, B., & Jöckel, P. (2007). Nitrogen compounds and ozone in the stratosphere: comparison of MIPAS satellite data with the chemistry climate model ECHAM5/MESSy1. Atmospheric Chemistry and Physics, 7(21), 5585–5598. doi:10.5194/acp-7-5585-2007.

    Article  Google Scholar 

  • Butchart, N., Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W., Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deckert, R., Dhomse, S., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Li, F., Mancini, E., McLandress, C., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Sassi, F., Scinocca, J. F., Shibata, K., Steil, B., & Tian, W. (2010). Chemistry-climate model simulations of twenty-first century stratospheric climate and circulation changes. Journal of Climate, 23, 5349–5374. doi:10.1175/2010JCLI3404.1.

    Article  Google Scholar 

  • Clilverd, M. A., Rodger, C. J., & Ulich, T. (2006). The importance of atmospheric precipitation in storm-time relativistic electron flux drop outs. Geophysical Research Letters, 33, L01102. doi:10.1029/2005GL024661.

    Article  Google Scholar 

  • Cnossen, I., Harris, M. J., Arnold, N. F., & Yiğit, E. (2009). Modelled effect of changes in the CO2 concentration on the middle and upper atmosphere: sensitivity to gravity wave parameterization. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1484–1496. doi:10.1016/j.jastp.2008.09.014.

    Article  Google Scholar 

  • Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., Moore, F., Hurst, D., Elkins, J., Schauffler, S., Andrews, A., & Boering, K. (2009). Age of stratospheric air unchanged within uncertainties over the past 30 years. Nature Geoscience, 3(2), 28–31. doi:10.1038/ngeo388.

    Article  Google Scholar 

  • Funke, B., López-Puertas, M., von Clarmann, T., Stiller, G. P., Fischer, H., Glatthor, N., Grabowski, U., Höpfner, M., Kellmann, S., Kiefer, M., Linden, A., Mengistu Tsidu, G., Milz, M., Steck, T., & Wang, D. Y. (2005a). Retrieval of stratospheric NO x from 5.3 and 6.2 μm nonlocal thermodynamic equilibrium emissions measured by Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat. Journal of Geophysical Research, 110, D09302. doi:10.1029/2004JD005225.

    Article  Google Scholar 

  • Funke, B., López-Puertas, M., Gil-López, S., von Clarmann, T., Stiller, G. P., Fischer, H., & Kellmann, S. (2005b). Downward transport of upper atmospheric NO x into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. Journal of Geophysical Research, 110, D24308. doi:10.1029/2005JD006463.

    Article  Google Scholar 

  • Funke, B., García-Comas, M., López-Puertas, M., Glatthor, N., Stiller, G. P., von Clarmann, T., Semeniuk, K., & McConnell, J. C. (2008). Enhancement of N2O during the October/November 2003 solar proton events. Atmospheric Chemistry and Physics, 8, 3805–3815.

    Article  Google Scholar 

  • Haigh, J. D., & Pyle, J. A. (1982). Ozone perturbation experiments in a two-dimensional circulation model. Quarterly Journal of the Royal Meteorological Society, 108, 551–574. doi:10.1256/smsqj.45704.

    Article  Google Scholar 

  • Harris, M. J. (2001). A new coupled middle atmosphere and thermosphere circulation model: studies of dynamic, energetic and photochemical coupling in the middle and upper atmosphere. Ph.D. thesis, University of London.

    Google Scholar 

  • Harris, M. J., Arnold, N. F., & Aylward, A. D. (2002). A study into the effect of the diurnal tide on the structure of the background mesosphere and thermosphere using the new coupled middle atmosphere and thermosphere (CMAT) general circulation model. Annales Geophysicae, 20, 225–235. doi:10.5194/angeo-20-225-2002.

    Article  Google Scholar 

  • Hurrell, J., Kushnir, Y., Ottersen, G., & Visbeck, M. (2003). The North Atlantic oscillation: climate significance and environmental impact. In An overview of the North Atlantic oscillation (pp. 1–35). Washington: AGU. doi:10.1029/134GM01.

    Google Scholar 

  • IPCC (2007). IPCC fourth assessment report: climate change 2007. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jackman, C. H., & McPeters, R. D. (2004). Solar variability and its effects on climate. In The effect of solar proton events on ozone and other constituents (pp. 305–319). Washington: Am. Geophys. Union.

    Google Scholar 

  • Jackman, C. H., DeLand, M. T., Labow, G. J., Fleming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., & Russell, J. M. (2005). Neutral atmospheric influences of the solar proton events in October-November 2003. Journal of Geophysical Research, 110(a9), A09S27. doi:10.1029/2004JA010888.

    Article  Google Scholar 

  • Jöckel, P., Sander, R., Kerkweg, A., Tost, H., & Lelieveld, J. (2005). Technical note: The Modular Earth Submodel System (MESSy)—a new approach towards Earth System Modeling. Atmospheric Chemistry and Physics, 5, 433–444. doi:10.5194/acp-5-433-2005.

    Article  Google Scholar 

  • Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., & Lelieveld, J. (2006). The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 6, 5067–5104. doi:10.5194/acp-6-5067-2006.

    Article  Google Scholar 

  • Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., & Kern, B. (2010). Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geoscientific Model Development, 3(3), 717–752. doi:10.5194/gmd-3-717-2010.

    Article  Google Scholar 

  • Jonsson, A. I., de Grandpré, J., Fomichev, V. I., McConnell, J. C., & Beagley, S. R. (2004). Doubled CO2-induced cooling in the middle atmosphere: photochemical analysis of the ozone radiative feedback. Journal of Geophysical Research, 109, D24103. doi:10.1029/2004JD005093.

    Article  Google Scholar 

  • Jungclaus, J. (2006). IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA2 run no.3: ocean monthly mean values MPImet/MaD Germany. World Data Center for Climate. CERA-DB “OM-GR1.5L40_EH5-T63L31_A2_3_MM”.

    Google Scholar 

  • Langematz, U., Kunze, M., Krüger, K., Labitzke, K., & Roff, G. L. (2003). Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. Journal of Geophysical Research, 108, 4027. doi:10.1029/2002JD002069.

    Article  Google Scholar 

  • Lelieveld, J., Brühl, C., Jöckel, P., Steil, B., Crutzen, P. J., Fischer, H., Giorgetta, M. A., Hoor, P., Lawrence, M. G., Sausen, R., & Tost, H. (2007). Stratospheric dryness: model simulations and satellite observations. Atmospheric Chemistry and Physics, 7, 1313–1332. doi:10.5194/acp-7-1313-2007.

    Article  Google Scholar 

  • Nakicenovic, N., Alcamo, J., Davis, G., de Vries, B., Fenhann, B., Gaffin, S., Gregory, K., Grübler, A., Jung, T. Y., Kram, T., La Rovere, E. L., Michaelis, E. L., Mori, S., Morita, T., Pepper, W., Pitcher, H., Price, L., Raihi, K., Roehrl, A., Rogner, H.-H., Sankovski, A., Schlesinger, M., Shukla, P., Smith, S., Swart, R., van Rooijen, S., Victor, N., & Dadi, Z. (2000). IPCC special report on emissions scenarios. Cambridge: Cambridge University Press.

    Google Scholar 

  • Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., & Russell, J. M. (2007). Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 112, D08308. doi:10.1029/2006JD007696.

    Article  Google Scholar 

  • Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108, D144407. doi:10.1029/2002JD002670.

    Article  Google Scholar 

  • Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., & Schulzweida, U. (2006). Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate, 19, 3771. doi:10.1175/JCLI3824.1.

    Article  Google Scholar 

  • Rohen, G., von Savigny, C., Sinnhuber, M., Llewellyn, E. J., Kaiser, J. W., Jackman, C. H., Kallenrode, M.-B., Schröter, J., Eichmann, K.-U., Bovensmann, H., & Burrows, J. P. (2005). Ozone depletion during the solar proton events of October/November 2003 as seen by SCIAMACHY. Journal of Geophysical Research, 110, A09S39. doi:10.1029/2004JA010984.

    Article  Google Scholar 

  • Sander, R., Kerkweg, A., Jöckel, P., & Lelieveld, J. (2005). Technical note: The new comprehensive atmospheric chemistry module mecca. Atmospheric Chemistry and Physics, 5(2), 445–450. doi:10.5194/acp-5-445-2005.

    Article  Google Scholar 

  • Sander, R., Baumgaertner, A., Gromov, S., Harder, H., Jöckel, P., Kerkweg, A., Kubistin, D., Regelin, E., Riede, H., Sandu, A., Taraborrelli, D., Tost, H., & Xie, Z.-Q. (2011). The atmospheric chemistry box model CAABA/MECCA-3.0. Geoscientific Model Development, 4, 373–380. doi:10.5194/gmd-4-373-2011.

    Article  Google Scholar 

  • Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., & Walters, S. (2006). The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling. Journal of Climate, 19, 3903–3931. doi:10.1175/JCLI3829.1.

    Article  Google Scholar 

  • Seppälä, A., Randall, C. E., Clilverd, M. A., Rozanov, E., & Rodger, C. J. (2009). Geomagnetic activity and polar surface air temperature variability. Journal of Geophysical Research, 114(a13), A10312. doi:10.1029/2008JA014029.

    Article  Google Scholar 

  • Solomon, S., Rusch, D. W., Gerard, J. C., Reid, G. C., & Crutzen, P. J. (1981). The effect of particle-precipitation events on the neutral and ion chemistry of the middle atmosphere, 2, Odd hydrogen. Planetary and Space Science, 29(8), 885–892.

    Article  Google Scholar 

  • Verronen, P. T., Rodger, C. J., Clilverd, M. A., & Wang, S. (2011). First evidence of mesospheric hydroxyl response to electron precipitation from the radiation belts. Journal of Geophysical Research. Atmospheres, 116(D15), D07307. doi:10.1029/2010JD014965.

    Google Scholar 

  • Vitt, F. M., & Jackman, C. H. (1996). A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model. Journal of Geophysical Research, 101, 6729–6740. doi:10.1029/95JD03386.

    Article  Google Scholar 

Download references

Acknowledgements

The SPACENOX and SPE parameterizations were developed during the CAWSES/ProSECCO project (see Chap. 29), the remaining work was performed in the CAWSES/TIES project. Funding from the DFG for both projects is gratefully acknowledged. The simulations were performed at the Rechenzentrum Garching of the Max Planck Society and the DKRZ (Deutsches Klimarechenzentrum). The development of the ECHAM/MESSy-CMAT coupling was supported in the project WEStSiDe (Workflow environment for Earth System Simulations and Model Development) by the DEISA2 (Distributed European Infrastructure for Supercomputing Applications 2) initiative, funded by the EU FP-7 program (RI-222919). The Ferret program (http://www.ferret.noaa.gov) from NOAA’s Pacific Marine Environmental Laboratory was used for creating some of the graphics. Thanks go to all MESSy developers and users for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. G. Baumgaertner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baumgaertner, A.J.G., Jöckel, P., Aylward, A.D., Harris, M.J. (2013). Simulation of Particle Precipitation Effects on the Atmosphere with the MESSy Model System. In: Lübken, FJ. (eds) Climate and Weather of the Sun-Earth System (CAWSES). Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4348-9_17

Download citation

Publish with us

Policies and ethics