Atmospheric Ionization Due to Precipitating Charged Particles

  • Jan Maik Wissing
  • Jan Philipp Bornebusch
  • May-Britt KallenrodeEmail author
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Precipitating charged particles contribute to the natural variations in the Earth’s atmosphere such as ionization, electron density, and composition of e.g. NOx and Ozone. Precipitating solar energetic and magnetospheric particles show a highly dynamic behavior in space and time. We present a 3D ionization model considering the relevant particle species (electrons, protons, and alpha particles) as well as precipitation areas (polar cap and auroral oval): the Atmospheric Ionization Model OSnabrück AIMOS, and discuss some of the atmospheric consequences of precipitating particles. We present the limitations of direct comparisons between EISCAT and precipitating particles and give comparisons between incoherent scatter measurements and a combination of AIMOS and the HAMMONIA GCM to demonstrate the consistency in both methods.


Geomagnetic Activity Solar Energetic Particle Ionization Rate Particle Precipitation Solar Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agostinelli, S., et al. (2003). Geant4: a simulation toolkit. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250–303. CrossRefGoogle Scholar
  2. Berger, M. J., Seltzer, S. M., & Maeda, K. (1970). Energy deposition by auroral electrons in the atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 32, 1015–1045. CrossRefGoogle Scholar
  3. Bhattacharya, Y., & Gerrard, A. J. (2009). Mesospheric winds and polar vortex motion. Atmospheric Chemistry and Physics Discussion, 9, 16549–16562. CrossRefGoogle Scholar
  4. Bornebusch, J. P., Wissing, J. M., & Kallenrode, M.-B. (2010). Solar particle precipitation into the polar atmosphere and their dependence on hemisphere and local time. Advances in Space Research, 45, 632–637. doi: 10.1016/j.asr.2009.11.008. CrossRefGoogle Scholar
  5. Callis, L. B., et al. (1996a). Precipitating electrons: evidence for effects on mesospheric odd nitrogen. Geophysical Research Letters, 23, 1901–1904. CrossRefGoogle Scholar
  6. Callis, L. B., Baker, D. N., Natarajan, M., Blake, J. B., Mewaldt, R. A., Selesnick, R. S., & Cummings, J. R. (1996b). A 2-d model simulation of downward transport of noy into the stratosphere: effects on the austral spring o3 and noy. Geophysical Research Letters, 23, 1905–1908. CrossRefGoogle Scholar
  7. Callis, L. B., Natarajan, M., Evans, D. S., & Lambeth, J. D. (1998). Solar atmospheric coupling by electrons (solace): 1. Effects of the may 12, 1997 solar event on the middle atmosphere. Journal of Geophysical Research, 103, 28405–28419. CrossRefGoogle Scholar
  8. Crutzen, P. J., Isaksen, I. S. A., & Reid, G. C. (1975). Solar proton events: stratospheric sources of nitric oxide. Science, 189, 457–459. CrossRefGoogle Scholar
  9. Evans, D. S., & Greer, M. S. (2004). Polar orbiting environmental satellite, space environment monitor—2: Instrument descriptions and archive data documentation (Technical memorandum). Space Environ. Cent., NOAA.
  10. Fang, X., Randall, C. E., Lummerzheim, D., Solomon, S. C., Mills, M. J., Marsh, D. R., Jackman, C. H., Wang, W., & Lu, G. (2008). Electron impact ionization: a new parameterization for 100 ev to 1 mev electrons. Journal of Geophysical Research, 113, A09311. doi: 10.1029/2008JA013384. CrossRefGoogle Scholar
  11. Farley, D. (1996). Incoherent scatter radar probing. In H. Kohl, R. Ruster & K. Schlegel (Eds.), Modern ionospheric science (pp. 415–439). Katlenburg-Lindau: European Geophysical Society Publications. Google Scholar
  12. Heath, D. F., Krueger, A. J., & Crutzen, P. J. (1977). Solar proton event: influence in stratospheric ozone. Science, 197, 886–889. CrossRefGoogle Scholar
  13. Jackman, C. H., McPeters, R. D., Labow, G. J., Fleming, E. L., Praderas, C. J., & Russell, J. M. (2001). Northern hemisphere atmospheric effects due to the July 2000 solar proton event. Geophysical Research Letters, 28, 1886–2883. CrossRefGoogle Scholar
  14. Jackman, C. H., DeLand, M. T., Labow, G. J., Flemming, E. L., Weisenstein, D. K., Ko, M. K. W., Sinnhuber, M., & Russell, J. M. (2005). Neutral atmospheric influences of the solar events in October–November 2003. Journal of Geophysical Research, 110, A09S27. doi: 10.1029/2004JA010888. CrossRefGoogle Scholar
  15. Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R., Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess, P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A., Granier, C., Diehl, T., Niemeier, U., & Simmons, A. J. (2007). Sensitivity of chemical tracers to meteorological parameters in the mozart-3 chemical transport model. Journal of Geophysical Research, 112. doi: 10.1029/2006JD007879.
  16. Leske, R. A., Mewaldt, R. A., Stone, E. C., & von Rosenvinge, T. T. (2001). Observations of geomagnetic cutoff variations during solar energetic particle events and implications for the radiation environment at the space station. Journal of Geophysical Research, 106, A08305. CrossRefGoogle Scholar
  17. Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., & Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the maecham5 model. Journal of Climate, 19(16), 3863–3881. CrossRefGoogle Scholar
  18. Marsh, D. R., Garcia, R. R., Kinnison, D. E., Boville, B. A., Sassi, F., Solomon, S. C., & Matthes, K. (2007). Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. Journal of Geophysical Research, 112, D23306. doi: 10.1029/2006JD008306. CrossRefGoogle Scholar
  19. McPeters, R. D., & Jackman, C. H. (1985). The response of ozone to solar proton events during solar cycle 21: the observations. Journal of Geophysical Research, 90, 7945–7954. CrossRefGoogle Scholar
  20. Mewaldt, R. A., et al. (2005). Proton, helium, and electron spectra during the large solar particle events of October–November 2003. Journal of Geophysical Research, 110, A09S18. doi: 10.1029/2005JA011038. CrossRefGoogle Scholar
  21. NASA (1996). GOES I-M DataBook. National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland 20771, USA, revision 1st ed.
  22. Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., & Russell III, J. M. (2007). Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992–2005. Journal of Geophysical Research, 112, D08308. doi: 10.1029/2006JD007696. CrossRefGoogle Scholar
  23. Roble, R. G., & Ridley, E. C. (1987). An auroral model for the ncar thermospheric general circulation model (tgcm). Annales Geophysicae, 5A, 369–382. Google Scholar
  24. Rohen, G., et al. (2005). Ozone depletion during the solar proton events of October/November 2003 as seen by sciamachy. Journal of Geophysical Research, 110, A09S39. doi: 10.1029/2004JA010984. CrossRefGoogle Scholar
  25. Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A., & Diehl, T. (2006). The hammonia chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and co2 doubling. Journal of Climate, 19, 3902–3931. Google Scholar
  26. Schröter, J., Heber, B., Steinhilber, F., & Kallenrode, M.-B. (2006). Energetic particles in the atmosphere: a Monte Carlo approach. Advances in Space Research, 37(8), 1597–1601. CrossRefGoogle Scholar
  27. Seppälä, A., Clilverd, M. A., & Rodger, C. J. (2007). Nox enhancements in the middle atmosphere during 2003–2004 polar winter: relative significance of solar proton events and the aurora as a source. Journal of Geophysical Research, 207. doi: 10.1029/2006JD008326.
  28. Sinnhuber, B.-M., Weber, M., Amankwah, A., & Burrows, J. P. (2003a). Total ozone during the unusual antarctic winter of 2002. Geophysical Research Letters, 30. doi: 10.1029/2002GL016798.
  29. Sinnhuber, M., Burrows, J. P., Chipperfield, M. P., Jackman, C. H., Kallenrode, M.-B., Kunzi, K. F., & Quack, M. (2003b). A model study of the impact of magnetic field structure on atmospheric composition during solar proton events. Geophysical Research Letters, 30. doi: 10.1029/2003GL017265.
  30. Verronen, P. T. (2006). Ionosphere-atmosphere interaction during solar proton events. Doctoral dissertation, Ph.D. thesis, University of Helsinki. Google Scholar
  31. Verronen, P. T., Turunen, E., Ulich, T., & Kyrölä, E. (2002). Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model. Annales Geophysicae, 20, 1967–1976. CrossRefGoogle Scholar
  32. Winkler, H., Sinnhuber, M., Notholt, J., Kallenrode, M.-B., Steinhilber, F., Vogt, J., Zieger, B., Glassmeier, K.-H., & Stadelmann, A. (2008). Modeling impacts of geomagnetic field variations on middle atmospheric ozone responses to solar proton events on long timescales. Journal of Geophysical Research, 113, D02302. doi: 10.1029/2007JD008574. CrossRefGoogle Scholar
  33. Wissing, J. M., & Kallenrode, M.-B. (2009). Atmospheric ionization module osnabrück (aimos): a 3-d model to determine atmospheric ionization by energetic charged particles from different populations. Journal of Geophysical Research, 114, A06104. doi: 10.1029/2008JA013884. CrossRefGoogle Scholar
  34. Wissing, J. M., Bornebusch, J. P., & Kallenrode, M.-B. (2008). Variation of energetic particle precipitation with local magnetic time. Advances in Space Research, 41, 1274–1278. doi: 10.1016/j.asr.2007.05.063. CrossRefGoogle Scholar
  35. Wissing, J. M., Kallenrode, M.-B., Wieters, N., Winkler, H., & Sinnhuber, M. (2010). Atmospheric ionization module osnabrück (aimos): 2. Total particle inventory in the October–November 2003 event and ozone. Journal of Geophysical Research, 115, A02308. doi: 10.1029/1009JA014419. CrossRefGoogle Scholar
  36. Wissing, J. M., Kallenrode, M.-B., Kieser, J., Schmidt, H., Rietveld, M. T., Strømme, A., & Erickson, P. J. (2011). Atmospheric ionization module osnabrück (aimos): 3. Comparison of electron density simulations by aimos/hammonia and incoherent scatter radar measurements. Journal of Geophysical Research, 116. doi: 10.1029/2010JA016300.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jan Maik Wissing
    • 1
  • Jan Philipp Bornebusch
    • 1
  • May-Britt Kallenrode
    • 1
    Email author
  1. 1.University of OsnabrückOsnabrückGermany

Personalised recommendations