High-Latitude Thermospheric Density and Wind Dependence on Solar and Magnetic Activity

  • Hermann LührEmail author
  • Stefanie Marker
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Processes in the high-latitude thermosphere are strongly controlled by the activity of the sun and by the geomagnetic field geometry. The CHAMP satellite, with its sensitive tri-axial accelerometer, provided detailed information about thermospheric dynamics over its mission life-time (2000–2010), thus contributing significantly to the CAWSES (Climate And Weather of the Sun-Earth System) programme. In this chapter, studies on thermospheric winds and density anomalies at high magnetic latitudes are presented. Thermospheric winds above the poles are directed predominantly from day to night side. Observations, however, reveal a distinct difference between winds on the dawn and dusk sides at auroral latitudes. While on the dawn side fast zonal winds towards night are prevailing, an anti-cyclonic vortex is formed on the dusk side. For the explanation of these local time dependent features various thermodynamic and electrodynamic influences have to be considered. As an example for mass density variation the cusp-related density anomaly is studied. The amplitude of this prominent local peak in mass density is influenced by the level of solar flux (F10.7) and by the solar wind input into the magnetosphere as quantified by the electric field caused by reconnection. A prerequisite for the appearance of density anomalies is the presence of soft-energy particle precipitation. By combining CHAMP and EISCAT measurements, it has been shown that Joule heating, fuelled predominantly by small-scale field-aligned currents (FACs), causes a strong increase in temperature at altitudes below 200 km. As a consequence molecular-rich air is up-welling. A density anomaly is recorded at 400 km altitude. Combining different observations and numerical model results provides a plausible chain of processes leading to the observed cusp-related density anomaly.


Solar Wind Interplanetary Magnetic Field Magnetic Local Time Density Anomaly Magnetic Latitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank W. Köhler for pre-processing the accelerometer data. The operational support of the CHAMP mission by the German Aerospace Centre (DLR) and the financial support for the data processing by the Federal Ministry of Education and Research (BMBF), as part of the Geotechnology Programme, are gratefully acknowledged. EISCAT is an international association supported by research organisations in China (CRIRP), Finland (SA), France (CNRS, till end 2006), Germany (DFG), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (PPARC). One the authors, S. Marker (previously Rentz), was supported by the Deutsche Forschungsgemeinschaft DFG through the DFG Priority Programme “CAWSES”, SPP 1176 (Lu 446/8).


  1. Clemmons, J. H., Hecht, J. H., Salem, D. R., & Strickland, D. J. (2008). Thermospheric density in the Earth’s magnetic cusp as observed by the Streak mission. Geophysical Research Letters, 35, L24103. doi: 10.1029/2008GL035972. CrossRefGoogle Scholar
  2. Crowley, G., Reynolds, A., Thayer, J. P., Lei, J., Paxton, L. J., Christensen, A. B., Zhang, Y., Meier, R. R., & Strickland, D. J. (2008). Periodic modulations in thermospheric composition by solar wind high speed streams. Geophysical Research Letters, 35, L21106. doi: 10.1029/2008GL035745. CrossRefGoogle Scholar
  3. Demars, H. G., & Schunk, R. W. (2007). Thermospheric response to ion heating in the dayside cusp. Journal of Atmospheric and Solar-Terrestrial Physics, 69, 649–660. doi: 10.1016/j.jastp.2006.11.002. CrossRefGoogle Scholar
  4. Doornbos, E., van den IJssel, J., Lühr, H., Förster, M., & Koppenwallner, G. (2010). Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. Journal of Spacecraft and Rockets, 47(4), 580–589. doi: 10.2514/1.48114. CrossRefGoogle Scholar
  5. Emmert, J. T. (2009). A long-term data set of globally averaged thermospheric total mass density. Journal of Geophysical Research, 114, A09326. doi: 10.1029/2009JA014102. Google Scholar
  6. Emmert, J. T., & Picone, J. M. (2010). Climatology of globally averaged thermospheric mass density. Journal of Geophysical Research, 115, A09326. doi: 10.1029/2010JA015298. CrossRefGoogle Scholar
  7. Förster, M., Rentz, S., Köhler, W., Liu, H., & Haaland, S. E. (2008). IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements. Annals of Geophysics, 26, 1581–1595. doi: 10.5194/angeo-26-1581-2008. CrossRefGoogle Scholar
  8. Fuller-Rowell, T. J., & Rees, D. (1984). Interpretation of an anticipated long-lived vortex in the lower thermosphere following simulation of an isolated substorm. Planetary and Space Science, 32, 69–86. CrossRefGoogle Scholar
  9. Liu, H., Lühr, H., Henize, V., & Köhler, W. (2005). Global distribution of the thermospheric total mass density derived from CHAMP. Journal of Geophysical Research, 110, A04301. doi: 10.1029/2004JA010741. CrossRefGoogle Scholar
  10. Liu, H., Lühr, H., Watanabe, S., Köhler, W., Henize, V., & Visser, P. (2006). Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies. Journal of Geophysical Research, 111, A07307. doi: 10.1029/2005JA011415. CrossRefGoogle Scholar
  11. Liu, H., Watanabe, S., & Kondo, T. (2009). Fast thermospheric wind jet at the Earth’s dip equator. Geophysical Research Letters, 36, L08103. doi: 10.1029/2009GL037377. CrossRefGoogle Scholar
  12. Lockwood, M., Denig, W. F., Farmer, A. D., Davda, V. N., Cowley, S. W. H., & Lühr, H. (1993). Ionospheric signatures of pulsed reconnection at the Earth’s magnetopause. Nature, 361, 424. doi: 10.1038/361424a0. CrossRefGoogle Scholar
  13. Lühr, H., Rother, M., Köhler, W., Ritter, P., & Grunwaldt, L. (2004). Thermospheric up-welling in the cusp region: Evidence from CHAMP observations. Geophysical Research Letters, 31, L06805. doi: 10.1029/2003GL019314. CrossRefGoogle Scholar
  14. Lühr, H., Rentz, S., Ritter, P., Liu, H., & Häusler, K. (2007). Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Annals of Geophysics, 25, 1093–1101. doi: 10.5194/angeo-25-1093-2007. CrossRefGoogle Scholar
  15. Millward, G. H., Moffett, R. J., Balmforth, H. F., & Rodger, A. S. (1999). Modeling the ionospheric effects of ion and electron precipitation in the cusp. Journal of Geophysical Research, 104(A11), 24603–24612. doi: 10.1029/1999JA900249. CrossRefGoogle Scholar
  16. Prölss, G. W. (2004). Physics of the Earth’s space environment: an introduction. Berlin: Springer. CrossRefGoogle Scholar
  17. Prölss, G. W. (2011). Density perturbations in the upper atmosphere caused by the dissipation of solar wind energy. Surveys in Geophysics, 32, 101–195. doi: 10.1007/s10712-010-9104-0. CrossRefGoogle Scholar
  18. Reigber, C., Lühr, H., & Schwintzer, P. (2002). CHAMP mission status. Advances in Space Research, 30, 129–134. doi: 10.1016/S0273-1177(02)00276-4. CrossRefGoogle Scholar
  19. Rentz, S. (2009). The upper atmospheric fountain effect in the polar cusp region. Ph.D. thesis, TU Braunschweig. doi: 10.2312/GFZ.b103-09050.
  20. Rentz, S., & Lühr, H. (2008). Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Annals of Geophysics, 26, 2807–2823. doi: 10.5194/angeo-26-2807-2008. CrossRefGoogle Scholar
  21. Rishbeth, H. (2002). Whatever happened to superrotation? Journal of Atmospheric and Solar-Terrestrial Physics, 64, 1351–1360. doi: 10.1016/S1364-6826(02)00097-4. CrossRefGoogle Scholar
  22. Ritter, P., Lühr, H., & Doornbos, E. (2010). Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Annals of Geophysics, 2008, 1207–1220. doi: 10.5194/angeo-28-1207-2010. CrossRefGoogle Scholar
  23. Rother, M., Schlegel, K., & Lühr, H. (2007). CHAMP observation of intense kilometer-scale field-aligned currents, evidence for an ionospheric Alfvén resonator. Annals of Geophysics, 25, 1603–1615. doi: 10.5194/angeo-25-1603-2007. CrossRefGoogle Scholar
  24. Schlegel, K., Lühr, H., St.-Maurice, J.-P., Crowley, C., & Hackert, G. (2005). Thermospheric density structure over the polar regions observed with CHAMP. Annals of Geophysics, 23, 1659–1672. doi: 10.5194/angeo-23-1659-2005. CrossRefGoogle Scholar
  25. Thayer, J. P., Killeen, T. L., McCormac, F. G., Tschan, C. R., Ponthieu, J.-J., & Spencer, N. W. (1987). Thermospheric neutral wind signatures dependent on the east-west component of the interplanetary magnetic field for Northern and Southern Hemispheres, as measured from Dynamics Explorer-2. Annals of Geophysics, 5, 363–368. Google Scholar
  26. Vogt, J. (2002). Alfvén wave coupling in the auroral current circuit. Surveys in Geophysics, 23, 335–377. doi: 10.1023/A:1015597724324. CrossRefGoogle Scholar
  27. Wang, H., Lühr, H., Häusler, K., & Ritter, P. (2011). Effect of subauroral polarization streams on the thermosphere: A statistical study. Journal of Geophysical Research, 116, A03312. doi: 10.1029/2010JA016236. CrossRefGoogle Scholar
  28. Watermann, J., Stauning, P., Lühr, H., Newell, P. T., Christiansen, F., & Schlegel, K. (2009). Are small-scale field-aligned currents and magnetosheath-like particle precipitation signatures of the same low-altitude cusp? Advances in Space Research, 43, 41–46. doi: 10.1016/j.asr.2008.03.031. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.ILS KraftfahrzeugeTechnische Universität BerlinBerlinGermany

Personalised recommendations