Mechanical Behavior in the Micron and Submicron/Nano Range

  • Joshua Pelleg
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 190)


Throughout this book, there has been frequent discussion about the effect of size on the mechanical properties of materials. Usually, strength properties increase with decreasing dimensions, while ductility decreases. Decreasing the dimensions of a material may decrease the size of the grains in polycrystalline materials. The size of single crystals depends on their growth conditions, but, also in this case, decreased size has the same influence on the mechanical properties. The expectation of improved mechanical characteristics, especially in the submicron/nanometer range, however, must be supported by experimental evidence. Experimental evidence has, indeed, indicated the outstanding mechanical properties of nanocrystalline (NC) materials that often show: superstrength, superhardness, improved specific strength and tribological performance (as attested in the literature). This pattern of reduced ductility with increased strength is also indicated in materials having small dimensions; however recently, some cases of substantial ductility were reported in superstrong NC materials undergoing 100% elongation or more without failure. These reported properties, the unique combination of high strength and good ductility, make such materials ideal for applications in a wide range of fields, such as the aviation, automotive and electronics industries, to name just a few. The aim of this chapter is to provide an overview of some of the mechanical properties discussed thus far regarding materials with small dimensions and to characterize their observed behavior.


Flow Stress Creep Rate Stress Exponent Coarse Grained Partial Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. D. Hull, D. Bacon, Introduction to Dislocations (Elsevier Butterworth-Heinemann, Oxford, 2004)Google Scholar
  2. E.K. Baumert, P.-O. Theillet, O.N. Pierron, Acta Mater. 58, 2854 (2010)CrossRefGoogle Scholar
  3. S.S. Brenner, Science 128, 56 (1958)CrossRefGoogle Scholar
  4. P. Cavaliere, Int. J. Fatigue 31, 1476 (2009)CrossRefGoogle Scholar
  5. X.X. Chen, A.H.W. Ngan, Scr. Mater. 64, 717 (2011)CrossRefGoogle Scholar
  6. J. Chen, L. Lu, K. Lu, Scr. Mater. 54, 1913 (2006)CrossRefGoogle Scholar
  7. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scr. Mater. 23, 1679 (1989)Google Scholar
  8. B.W. Chua, L. Lu, M.O. Lai, Mater. Res. Bull. 41, 2102 (2006)CrossRefGoogle Scholar
  9. V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, A.N. Sysoev, V.I. Kopylov, Scr. Mater. 50, 861 (2004)CrossRefGoogle Scholar
  10. R.L. Coble, J. Appl. Phys. 34, 1679 (1963)CrossRefGoogle Scholar
  11. F.F. Csikor, Ch Motz, D. Weygand, M. Zaiser, S. Zapperi, Science 318, 251 (2007)CrossRefGoogle Scholar
  12. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma, Acta Mater. 55, 4041 (2007)CrossRefGoogle Scholar
  13. G. Dehm, S.H. Oh, P. Gruber, M. Legros, F.D. Fischer, Acta Mater. 55, 6659 (2007).CrossRefGoogle Scholar
  14. G. Dehm, Prog. Mater. Sci. 54, 664 (2009)CrossRefGoogle Scholar
  15. J. Deng, D.L. Wang, Q.P. Kong, J.P. Shui, Scr. Metall. Mater. 32, 349 (1995)CrossRefGoogle Scholar
  16. D.M. Dimiduk, M.D. Uchic, T.A. Parthasarathy, Acta Mater. 53, 4065 (2005)CrossRefGoogle Scholar
  17. H.D. Espinosa, B.C. Prorok, B. Peng, J. Mech. Phys. Solids 52, 667 (2004)CrossRefGoogle Scholar
  18. R.B. Figueiredo, T.G. Langdon, J. Mater. Sci. 43, 7366 (2008)CrossRefGoogle Scholar
  19. G.E. Fougere, J.R. Weertman, R.W. Siegel, S. Kim, Scr. Metall. Mater. 26, 1879 (1992)CrossRefGoogle Scholar
  20. L.B. Freund, J. Appl. Mech. 54, 553 (1987)CrossRefGoogle Scholar
  21. L.H. Friedman, D.C. Chrzan, Philos. Mag. A 77, 1985 (1998)CrossRefGoogle Scholar
  22. A.G. Froseth, P.M. Derlet, H. Van Swygenhoven, Acta Mater. 52, 5863 (2004)CrossRefGoogle Scholar
  23. Y. Gotoh, Jpn. J. Appl. Phys. 11, 1403 (1972)CrossRefGoogle Scholar
  24. J.R. Greer, W.D. Nix, Phys. Rev. B 73, 245410 (2006)CrossRefGoogle Scholar
  25. J.R. Greer, W.C. Oliver, W.D. Nix, Acta Mater. 53, 1821 (2005)CrossRefGoogle Scholar
  26. S. Han, C. Lim, C. Kim, S. Kim, Metall. Mater. Trans. A 36A, 467 (2005)CrossRefGoogle Scholar
  27. T. Hanlon, Y.-N. Kwon, S. Suresh, Scr. Mater. 49, 675 (2003)CrossRefGoogle Scholar
  28. Z. Horita, K. Matsubara, K. Makii, T.G. Langdon, Scr. Mater. 47, 255 (2002)CrossRefGoogle Scholar
  29. H.-K. Liu, B.J. Lee, P.-P. Liu, Sens. Actuators A 140, 257 (2007)CrossRefGoogle Scholar
  30. K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, D. Kadau, P. Entel, M. Kreth, F. Westerhoff, D. Wolf, Metall. Mater. Trans. 35A, 2719 (2004)CrossRefGoogle Scholar
  31. D. Kiener, W. Grosinger, G. Dehm, R. Pippan, Acta Mater. 56, 580 (2008)CrossRefGoogle Scholar
  32. Ju-Y Kim, J.R. Greer, Acta Mater. 57, 5245 (2009)CrossRefGoogle Scholar
  33. Ju-Y Kim, J.R. Greer, Acta Mater. 58, 2355 (2010)CrossRefGoogle Scholar
  34. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater. 51, 5743 (2003)CrossRefGoogle Scholar
  35. R. Lapovok, C. Loader, F.H. Dalla Torre, S.L. Semiatin, Mater. Sci. Eng. A 425, 36 (2006)CrossRefGoogle Scholar
  36. M. Legros, M. Cabie, D.S. Gianola, Microsc. Res. Tech. 72, 270 (2009)CrossRefGoogle Scholar
  37. K. Lu, W.D. Wei, J.T. Wang, Scr. Metall. Mater. 24, 2319 (1990)CrossRefGoogle Scholar
  38. H. Lüthy, R.A. White, O.D. Sherby, Mater. Sci. Eng. 39, 211 (1979)CrossRefGoogle Scholar
  39. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006)CrossRefGoogle Scholar
  40. P.C. Millett, T. Desai, V. Yamakov, D. Wolf, Acta Mater. 56, 3688 (2008)CrossRefGoogle Scholar
  41. Y. Miyahara, K. Matsubara, Z. Horita, T.G. Langdon, Metall. Mater. Trans. 36A, 1705 (2005)CrossRefGoogle Scholar
  42. D.G. Morris, Rev. Metal. 46, 173 (2010)CrossRefGoogle Scholar
  43. H. Mughrabi, H.W. Höppel, Int. J. Fatigue 32, 1413 (2010)CrossRefGoogle Scholar
  44. C.L. Muhlstein, R.T. Howe, R.O. Ritchie, Mech. Mater. 36, 13 (2004)CrossRefGoogle Scholar
  45. G.W. Nieman, J.R. Weertman, R.W. Siegel, J. Mater. Res. 6, 10121 (1991)CrossRefGoogle Scholar
  46. W.D. Nix, Metall. Trans. A 20, 2217 (1989)CrossRefGoogle Scholar
  47. W.D. Nix, J.R. Greer, G. Feng, E.T. Lilleodden, Thin Solid Films 515, 3152 (2007)CrossRefGoogle Scholar
  48. A. Ovidko, Rev. Adv. Mater. Sci. 10, 89 (2005)Google Scholar
  49. S.N. Patankar, J.P. Escobedo, D.P. Field, G. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, F.H. (Sam) Froes, J. Alloys Compd. 345, 221 (2002)Google Scholar
  50. G.M. Pharr, Mater. Sci. Eng. A253, 151 (1998)Google Scholar
  51. R. Raj, M.F. Ashby, Trans. Metall. Soc. AIME 2, 1113 (1971)CrossRefGoogle Scholar
  52. R.O. Rittchie, J.J. Kruzic, C.L. Muhlstein, R.K. Nalla, E.A. Stach, Int. J. Fract. 128, 1 (2004)CrossRefGoogle Scholar
  53. P.G. Sanders, M. Rittner, E. Kiedaisch, J.R. Weertman, H. Kung, Y. Lu, Nanostruct. Mater. 9, 433 (1997)CrossRefGoogle Scholar
  54. J.-H. Seo, Y. Yoo, Na-Y Park, S.-W. Yoon, H. Lee, S. Han, S.-W. Lee, T.-Y. Seong, S.-C. Lee, K.-B. Lee, P.-R. Cha, H.S. Park, B. Kim, J.-P. Ahn, Nano Lett. 11, 3499 (2011)CrossRefGoogle Scholar
  55. G. Sharma, R. Kishore, M. Sundararaman, R.V. Ramanujan, Mater. Sci. Eng. A 419, 44 (2006)Google Scholar
  56. W.N. Sharpe Jr., Strain 44, 20 (2008)CrossRefGoogle Scholar
  57. M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix, Science 305, 986 (2004)CrossRefGoogle Scholar
  58. W.W. Van Arsdell, S.B. Brown, J. Microelectromech. Syst. 8, 319 (1999)CrossRefGoogle Scholar
  59. H. Van Swygenhoven, P.M. Derlet, A. Froseth, Acta Mater. 52, 2259 (2004)CrossRefGoogle Scholar
  60. A.Yu. Vinogradov, V.V. Stolyarov, S. Hashimoto, R.Z. Valiev, Mater. Sci. Eng. A318, 163 (2001)Google Scholar
  61. C.A. Volkert, E.T. Lilleodden, Philos. Mag. 86, 5567 (2006a)CrossRefGoogle Scholar
  62. C.A. Volkert, E.T. Lilleodden, Philos. Mag. 86, 5567 (2006b)CrossRefGoogle Scholar
  63. B. von Blanckenhagen, P. Gumbsch, E. Arzt, Philos. Mag. Lett. 83, 1 (2003)CrossRefGoogle Scholar
  64. N. Wang, Z. Wang, K.T. Aust, U. Erb, Mater. Sci. Eng. A237, 150 (1997)CrossRefGoogle Scholar
  65. Y. Wang, M. Chen, F. Zhou, E. Ma, Nature 419, 912 (2002)CrossRefGoogle Scholar
  66. W.W. Webb, R.D. Dragsdorf, W.D. Forgeng, Phys. Rev. 108, 498 (1957)CrossRefGoogle Scholar
  67. J.R. Weertman, Mater. Sci. Eng. A 166, 161 (1993)CrossRefGoogle Scholar
  68. F.E.N.G. Xiao-ming, A.I. Tao-tao, Trans. Nonferr. Met. Soc. China 19, 293 (2009)CrossRefGoogle Scholar
  69. W. Yan, F.D. Fischer, Arch. Appl. Mech. 70, 255 (2000)zbMATHCrossRefGoogle Scholar
  70. W.M. Yin, S.H. Whang, R. Mirshams, C.H. Xiao, Mater. Sci. Eng. A301, 18 (2001)Google Scholar
  71. K. Yoshida, Y. Gotoh, M. Yamamoto, Jpn. J. Appl. Phys. 24, 1099 (1968)Google Scholar
  72. J. Zhu, D. Shi, J. Phys. D: Appl. Phys. 44, 055404 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Joshua Pelleg
    • 1
  1. 1.Materials EngineeringBen Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations