Cyclic Stress – Fatigue

  • Joshua Pelleg
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 190)

Abstract

The most common failure that occurs in materials, such as metals, is caused by fatigue. The simplest way of looking at fatigue is by considering a specimen which is being repeatedly stressed under tension and compression. Not only tensile stresses that are repeatedly applied can cause fatigue failure, but any force which is acting in a reverse direction may ultimately result in such a failure. Loading a test specimen repeatedly by applying a force acting axially, torsionally or flexurally can induce fatigue failure.

Keywords

Residual Stress Fatigue Life Fatigue Strength Strain Amplitude Fatigue Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. W.M. Baldwin Jr., Residual Stresses in Metals, Proc. ASTM 49, 1949. p. 1Google Scholar
  2. N.E. Dowling, Mechanical Behavior of Materials, Second edn. (Prentice Hall, Upper Saddle River, 1999), p. 650Google Scholar
  3. N.E. Dowling, Mean Stress Effects in Stress-Life and Strain-Life Fatigue. Society of Automotive Engineers, Inc., 2004, F2004/51Google Scholar
  4. J. Goodman, Mechanics Applied to Engineering (Longmans Green, London, 1899)Google Scholar
  5. R.W. Hetzberg, Deformation and Mechanics of Engineering Materials (Wiley, New York, 1976), pp. 415–462. and 465-520Google Scholar
  6. R.E. Heywood, Designing Against Fatigue (Chapman & Hall, London, 1962). Quoted by CiavarellaGoogle Scholar
  7. P. Kuhn, H.F. Hardrath, An Engineering Method for Estimating Notch-Size Effect in Fatigue Tests on Steel. (NASA Tech Note 2805, 1952). Quoted by CiavarellaGoogle Scholar
  8. B.J. Lazan, A.A. Blatherwick, Fatigue Properties of Aluminum Alloys at Various Direct-Stress Ratios, Part II Extruded Alloys. (WADC Technical Report, 52-307, December 1952). Approved for public releaseGoogle Scholar
  9. S.S. Manson, Fatigue a Complex Subject-Some Simple Approximations. Exp. Mech. SESA 5, 193 (1965)CrossRefGoogle Scholar
  10. S.S. Manson, M.H. Hirschberg, Fatigue: An Interdisciplinary Approach (Syracuse University Press, Syracuse, 1964), p. 133Google Scholar
  11. G. Masing, Eigenspannungen und Verfestigung bei Messing, in Proceedings of the 2nd International Congress of Applied Mechanics, Zurich, 1926. Quoted by H. Zenner, F. Renner, in Int. J. Fatigue 24, 1255 (2002)Google Scholar
  12. J.D. Morrow, Cyclic Plastic Strain Energy and the Fatigue of Metals, in Internal Friction, Damping and Cyclic Plasticity. ASTM STP, 378 (American Society for Testing and Materials, Philadelphia, 1965)Google Scholar
  13. H. Neuber, Theory of Notch Stresses (Springer, Vienna, 1958). Quoted by CiavarellaGoogle Scholar
  14. N. Ono, Y. Nishimura, in Proceedings of the 12th International Conference on Fracture (Ottawa, CD ROM, 2009), pp. 1–10Google Scholar
  15. R.E. Peterson, Notch Sensitivity, in Metal Fatigue, ed. by G. Sines, J.L. Waisman (MacGraw-Hill, New York, 1959), pp. 293–306. Quoted by CiavarellaGoogle Scholar
  16. D.F. Socie, M.R. Mitchell, E.M. Caulfield, Fundamentals of Modern Fatigue Analysis. (Fracture Control Program, Report No. 26) (University of Illinois, Chicago, 1977)Google Scholar
  17. R.I. Stephens, Metal Fatigue in Engineering, 2nd edn. (Wiley-Interscience Publication, New York, 2001)Google Scholar
  18. R.I. Stephens, D.K. Chen, B.W. Horn, Fatigue Crack Growth with Negative Stress Ratio Following Single Overloads in 2024-T3 and 7075-T6 Aluminium-alloys, in Fatigue Crack Growth Under Spectrum Loads. ASTM STP 595 (ASTM, Philadelphia, 1976), pp. 27–40CrossRefGoogle Scholar
  19. S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, 2001)Google Scholar
  20. K. Walker, The Effect of Stress Ratio During Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum, in Effects of Environment and Complex Load History on Fatigue Life. ASTM STP, 462 (American Society for Testing and Materials, Philadelphia, 1970), p. 1CrossRefGoogle Scholar
  21. H.Q. Xue, E. Bayraktar, C. Bathias, J. Achiev. Mater. Manufac. Eng. 18, 251 (2006)Google Scholar
  22. G.T. Yahr, Fatigue Design Curves For 6061-T6 Aluminum, Oak Ridge National Laboratory, U.S. Department of Energy under Contract No. DE-AC05-84OR21400 (1993)Google Scholar

Further References

  1. B. Atzori, P. Lazzarin, R. Tovo, Österreichische Ingenieur-und Architekten- Zeitschrift 137, 556 (1992)Google Scholar
  2. O.H. Basquin, Proc. ASTM, 10, 625 (1910) quoted from W. Cui, J. Mar. Sci. Technol. 7, 43 (2002)Google Scholar
  3. C. Bathias, L. Drouillac, P. Le Francois, Int. J. Fatigue 23, S143 (2001)CrossRefGoogle Scholar
  4. C.A. Berg, M. Salama, Fibre Sci. Technol. 6, 125 (1973)CrossRefGoogle Scholar
  5. S.K. Bhaumik, R. Rangaraju, M.A. Venkataswamy, T.A. Bhaskaran, M.A. Parameswara, Eng. Fail. Anal. 9, 255 (2002)CrossRefGoogle Scholar
  6. V.I. Bol’shakov, V.S. Zoteev, L.G. Orlov and M.A, Tylkin, Translated from Metallovedenie i Termicheskaya Orabotka Metallov (2), 45 (1974)Google Scholar
  7. L.P. Borrego, L.M. Abreu, J.M. Costa, J.M. Ferreira, Eng. Fail. Anal. 11, 715 (2004)CrossRefGoogle Scholar
  8. D. Brandolisio, G. Poelman, G. De Corte, J. Symynck, M. Juwet, F. De Bal, Rotating Bending Machine for High Cycle Fatigue Testing, March 26, 2009Google Scholar
  9. F.P. Brennan, Int. J. Fatigue 16, 351 (1994)CrossRefGoogle Scholar
  10. M.W. Brown, D.K. Suker, C.H. Wang, Fatigue Fract. Eng. Mater. Struct. 19, 323 (1996)CrossRefGoogle Scholar
  11. D.A. Carpinteri, A. Spagnoli, S. Vantadori, Fatigue Fract. Eng. Mater. Struct. 25, 619 (2002)CrossRefGoogle Scholar
  12. M.D. Chaprin, H. Miyata, T. Tagawa, T. Miyata, M. Fujioka, Mater. Sci. Eng. A 381, 331 (2004)Google Scholar
  13. M. Ciavarella, G. Meneghetti, Int. J. Fatigue 26, 289 (2004)CrossRefGoogle Scholar
  14. W. Cui, J. Mar. Sci. Technol. 7, 43 (2002)CrossRefGoogle Scholar
  15. A.A. Dabayeh, T.H. Topper, Int. J. Fatigue 17, 261 (1995)CrossRefGoogle Scholar
  16. N.E. Dowling, Fatigue Fract. Eng. Mater. Struct. 32, 1004 (2009)CrossRefGoogle Scholar
  17. W. Elber, ASTM STP 559, 45 (1974)Google Scholar
  18. C.E. Feltner, C. Laird, Acta Met. 15, 1621 (1967)CrossRefGoogle Scholar
  19. P.J.E. Forsyth, Nature 171, 172 (1953)CrossRefGoogle Scholar
  20. M. de Freitas, F. Romeiro, M. da Fonte, Anales de Mecanica de la Fractura 2, 641 (2006)Google Scholar
  21. Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi, Scr. Mater. 46, 157 (2002)CrossRefGoogle Scholar
  22. S. Ganesh, S. Raman, K.A. Padmanabhan, Int. J. Fatigue 18, 71 (1996)CrossRefGoogle Scholar
  23. Yu-kui Gao, Xiang-bin Li, Qing-xiang Yang, M. Yao, Mater. Lett. 61, 466 (2007)CrossRefGoogle Scholar
  24. W. Geary, Int. J. Fatigue 14, 377 (1992)CrossRefGoogle Scholar
  25. K. Genel, M. Demirkol, Int. J. Fatigue 21, 207 (1999)CrossRefGoogle Scholar
  26. W.Z. Gerber, Z. Bayer Archit. Ing. Ver. 6, 101 (1874)Google Scholar
  27. A. Glage, A. Weidner, T. Richter, P. Trubitz, H. Biermann, European Symposium on Martensitic Transformations, ESOMAT 2009, 05007 (2009)Google Scholar
  28. K. Gopinath, A.K. Gogia, S.V. Kamat, R. Balamuralikrishnan, U. Ramamurty, Acta Mater. 57, 3450 (2009)CrossRefGoogle Scholar
  29. A.A. Griffith, Philos. Trans. R. Soc. Lond. A221, 153 (1921)Google Scholar
  30. Li Guobin, Wu Jianjun, J. Yanfei, Li Guiyun, J. Mater. Process. Technol. 100, 63 (2000)CrossRefGoogle Scholar
  31. G. Hammersley, L.A. Hackel, F. Harris, Opt. Lasers Eng. 34, 327 (2000)CrossRefGoogle Scholar
  32. X. Huang, T. Moan, W. Cui, Int. J. Fatigue 30, 2 (2008)CrossRefGoogle Scholar
  33. J.W. Jones, H. Mayer, J.V. Lasecki, J.E. Allison, Int. J. Fatigue 28, 1566 (2006)MATHCrossRefGoogle Scholar
  34. L. Junek, J. Bystriansky, L. Vlcek, B. Strnadel, Trans., SMiRT 19, Toronto, August 2007, Paper # G05/5, p. 1Google Scholar
  35. K. Kanazawa, S. Nishijima, J. Soc. Mater. Sci. 46, 1396 (1997)CrossRefGoogle Scholar
  36. J.M. Larsen, B.D. Worth, C.G. Annis Jr., F.K. Haake, Int. J. Fract. 80, 237 (1996)CrossRefGoogle Scholar
  37. P. Lazzarin, R. Tovo, G. Meneghetti, Int. J. Fatigue 19, 647 (1997)CrossRefGoogle Scholar
  38. B.A. Lerch, S.L. Draper, J.M. Pereira, Met. Mater. Trans. A 33A, 3871 (2002)CrossRefGoogle Scholar
  39. N. Limodin, Y. Verreman, T.N. Tarfa, Fatigue Fract. Eng. Mater. Struct. 26, 811 (2003)CrossRefGoogle Scholar
  40. Y. Liu, S. Mahadevan, Eng. Fract. Mech. 76, 2317 (2009)CrossRefGoogle Scholar
  41. S.P. Lynch, Mater. Sci. Eng. A 468, 74 (2007)CrossRefGoogle Scholar
  42. S.M. Marco, W.L. Starkey, Trans. ASME 76, 627 (1954)Google Scholar
  43. I. Marines, X. Bin, C. Bathias, Int. J. Fatigue 25, 1101 (2003a)CrossRefGoogle Scholar
  44. I. Marines, G. Dominguez, G. Baudry, J.-F. Vittori, S. Rathery, J.-P. Doucet, C. Bathias, Int. J. Fatigue 25, 1037 (2003b)CrossRefGoogle Scholar
  45. C. Menzemer, T.S. Srivatsan, Mater. Sci. Eng. A271, 188 (1999)Google Scholar
  46. K.J. Miller, J. Strain Anal. 5, 185 (1970)CrossRefGoogle Scholar
  47. M.A. Miner, J. Appl. Mech., Trans. ASME, 12, A159 (1945)Google Scholar
  48. Y. Murakami, Y. Tazunoki, T. Endo, Metall. Trans. A 15A, 2029 (1984)Google Scholar
  49. Y. Murakami, T. Namoto, T. Ueda, Fatigue Fract. Eng. Mater. Struct. 22, 581 (1999)CrossRefGoogle Scholar
  50. M. Nakajima, M. Akita, Y. Uematsu, K. Tokaji, Proc. Eng. 2, 323 (2009)CrossRefGoogle Scholar
  51. T. Nicholas, J.R. Zuiker, Int. J. Fracture. 80, 219 (1996)CrossRefGoogle Scholar
  52. E.S. Nikolin, G.V. Karpenko, Mater. Sci. 3, 487 (1967) [Fiziko-Khimicheskaya Mekhanika Materialov, 3, 667 (1967)]CrossRefGoogle Scholar
  53. D.W. Norwich, A. Fasching, J. Mater. Eng. Perform. 18, 558 (2009)CrossRefGoogle Scholar
  54. D. Novovic, R.C. Dewes, D.K. Aspinwall, W. Voice, P. Bowen, Int. J. Mach. Manufac. 44, 125 (2004)CrossRefGoogle Scholar
  55. J.H. Ong, Int. J. Fatigue 15, 213 (1993)CrossRefGoogle Scholar
  56. A. Palmgren, ZVDI 68, 339 (1924)Google Scholar
  57. A. Plumtree, H.A. Abdel-Raouf, Int. J. Fatigue 23, 799 (2001)CrossRefGoogle Scholar
  58. J. Polák, J. Man, K. Obrtlík, Int. J. Fatigue 25, 1027 (2003)CrossRefGoogle Scholar
  59. J. Polák, J. Man, T. Vystavěl, M. Petrenec, Mater. Sci. Eng. A 517, 204 (2009)CrossRefGoogle Scholar
  60. B. Pyttel, D. Schwerdt, C. Berger, Int. J. Fatigue 33, 49 (2011)CrossRefGoogle Scholar
  61. T. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma, Y. Ochi, M. Nakajima, T. Nakamura, Int. J. Fatigue 32, 497 (2010)CrossRefGoogle Scholar
  62. G. Salerno, R. Magnabosco, C. de Moura Neto, Int. J. Fatigue 29, 829 (2007)CrossRefGoogle Scholar
  63. C.S. Shin, S.H. Hsu, Int. J. Fatigue 15, 181 (1993)CrossRefGoogle Scholar
  64. F.S. Silva, Int. J. Fatigue 29, 1757 (2007)MATHCrossRefGoogle Scholar
  65. G.M. Sinclair, ASTM Proc. 52, 743 (1952)Google Scholar
  66. M. Skorupa, Fatigue Fract. Eng. Mater. Struct. 21, 987 (1998)CrossRefGoogle Scholar
  67. K.N. Smith, P. Watson, T.H. Topper, A stress–strain function for the fatigue of metals. J. Mater. JMLSA 57, 67 (1970)Google Scholar
  68. O.V. Sosnin, A.V. Gromova, Yu.F. Ivanov, S.V. Konovalov, V.E. Gromov, E.V. Kozlov, Int. J. Fatigue 27, 1186 (2005)CrossRefGoogle Scholar
  69. C.A. Stubbington, P.J.E. Forsyth, Acta Met. 14, 5 (1966)CrossRefGoogle Scholar
  70. D. Thevenet, N. Lautrou, J.Y. Cognard, PAMM Proc. Appl. Math. Mech. 8, 10243 (2008)CrossRefGoogle Scholar
  71. A.W. Thompson, W.A. Backofen, Acta Met. 19, 597 (1971)CrossRefGoogle Scholar
  72. T.H. Topper, M.T. Tu, Int. J. Fatigue 7, 159 (1985)CrossRefGoogle Scholar
  73. M.A.S. Torres, H.J.C. Voorwald, Int. J. Fatigue 24, 877 (2002)CrossRefGoogle Scholar
  74. V.T. Troshchenko, L.A. Khamaza, Strength Mater. 42, 647 (2010)CrossRefGoogle Scholar
  75. B.I. Verkin, N.M. Grinberg, V.A. Serdyuk, L.F. Yakovenko, Mater. Sci. Eng. 58, 145 (1983)CrossRefGoogle Scholar
  76. A. Vinogradov, S. Hashimoto, V.I. Kopylov, Mater. Sci. Eng. A355, 277 (2003)Google Scholar
  77. C. Vishnevsky, J.F. Wallace, Fatigue of Cast Steels Part I – A study of the notch effect and of the specimen design and loading on the fatigue properties of cast steel, Steel Foundry Research Foundation, Ohio, April, 1967. Published and Distributed by Steel Founders’ Society of America Westview Towers, 21010 Center Ridge Road Rocky River, Ohio 44 116Google Scholar
  78. G.M. Vyletel, J.E. Allison, D.C. van Aken, Met. Mater. Trans. A 26A, 3143 (1995)CrossRefGoogle Scholar
  79. D. Wagner, N. Ranc, C. Bathias, P.C. Paris, Fatigue Fract. Eng. Mater. Struct. 33, 11 (2009)Google Scholar
  80. G.W.J. Waldron, Acta Met. 13, 897 (1965)CrossRefGoogle Scholar
  81. J.F. Wallace, A.M. Said, R&D Center Laboratory, Technical Report 13100, Improvement in the Fatigue Behavior of Tank Track Pins, U.S. Army Tank-Automotive Command Research and Development Center, Warre ,Michigan 48090, Aug 1985Google Scholar
  82. Z. Wang, T. Nian, D. Ryding, T.M. Kuzay, Nuclear Instr. Method. Phys. Res. A 347, 651 (1994)CrossRefGoogle Scholar
  83. T. Wehner, A. Fatemi, Int. J. Fatigue 13, 241 (1991)CrossRefGoogle Scholar
  84. W. Yao, K. Xia, Y. Gu, Int. J. Fatigue 17, 245 (1995)CrossRefGoogle Scholar
  85. K. Yatsushiro, M. Sano, K, Yamanashi, M. Kuramoto, From JCPDS – International Centre for Diffraction Data 2003, Adv. X-ray Anal. 46, 92 (2003)Google Scholar
  86. H. Zenner, F. Renner, Int. J. Fatigue 24, 1255 (2002)CrossRefGoogle Scholar
  87. P. Zhang, J. Lindemann, Scr. Mater. 52, 485 (2005)CrossRefGoogle Scholar
  88. X. Zhu, A. Shyam, J.W. Jones, H. Mayer, J.V. Lasecki, J.E. Allison, Int. J. Fatigue 28, 1566 (2006)MATHCrossRefGoogle Scholar
  89. V. Zitounis, P.E. Irving, Int. J. Fatigue 29, 108 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Joshua Pelleg
    • 1
  1. 1.Materials EngineeringBen Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations