Advertisement

Silent Witnesses for Torrential Processes

  • Roland Kaitna
  • Johannes Huebl
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 47)

Abstract

Torrential processes like debris flows, debris floods, and intensive bedload transport represent a serious hazard for settlements and infrastructure located on Alpine fans. Protection works and mitigation measures are mostly based on the magnitude of a design event with a defined recurrence interval. However, engineering hazard assessment of torrential processes is often limited to rough estimation of possible future events since the data base is small and statistically reliable relationships between event frequency and magnitude are rare. Some information can be found in historical records of local communities. For this reason some effort has been done recently to collect this information from public administration offices and chronics in Austria (Huebl et al. 2010). Although the data is heterogeneous and its applicability for standard engineering extreme-value analysis is limited, information on historical events represents a helpful tool for hazard assessment in Alpine watershed and should be gathered if available.

Keywords

Debris Flow Hazard Assessment Sediment Availability Debris Flood Debris Flow Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge Dr. Christian Scheidl for his GIS support and critical comments on the manuscript.

References

  1. Ancey C (1999) Rhéologie des laves torrentielles. Final scientific report PNRN 1998–99, CEMAGREFGoogle Scholar
  2. Aulitzky H (1980) Preliminary two-fold classification of torrents. In: Proceedings of international symposium interpraevent, Bad Ischl, Austria, Band 4, pp 285–310Google Scholar
  3. Aulitzky H (1992) Die Sprache der “Stummen Zeugen” (The language of “silent wittnesses”). In: Proceedings of international symposium interpraevent, Bern, Switzerland, Band 6, pp 139–173Google Scholar
  4. Bardou E (2002) Methodologie de diagnostic des laves torrentielles sur un basin versant alpin. PhD thesis, École Polytechnique Fédéral de Laussane, 382 pGoogle Scholar
  5. Bardou E, Ancey C, Bonnard C, Vulliet L (2003) Classification of debris-flow deposits for hazard assessment in alpine areas. In: Rickenmann D, Chen LC (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress, Rotterdam, pp 799–808Google Scholar
  6. Blair TC, McPherson JG (1994) Alluvial fan processes and forms. In: Abrahams AD (ed) Geomorpholgy of desert environments. Chapman & Hall, London/Glasgow/New York/Tokyo/Melbourne, pp 354–402Google Scholar
  7. Bulmer MH, Barnouin-Jha OS, Peitersen MN, Bourke M (2002) An empirical approach to studying debris flows: implications for planetary modeling studies. J Geophys Res 107:1–16CrossRefGoogle Scholar
  8. Bunza G, Karl J, Mangelsdorf J (1982) Geologisch-morphologische Grundlage der Wildbachkunde. Schriftenreihe des Bayerischen Landesamt fuer Wasserwirtschaft 17Google Scholar
  9. Chen C (1987) Comprehensive review of debris flow modeling concepts in Japan. In: Costa JE, Wieczorek GF (eds) Debris flows/avalanches: process, recognition, and mitigation. Rev Eng Geol 7:13–29Google Scholar
  10. Chow VT (1959) Open channel hydraulics. McGraw-Hill, New York, p 680Google Scholar
  11. Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments and applications of geomorphology. Springer, Berlin, pp 268–317CrossRefGoogle Scholar
  12. Costa JE (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker VR, Kochel RC, Patton DC (eds) Flood geomorphology. Wiley, New York, pp 113–122Google Scholar
  13. Haiden A (1925) Ueber die Berechnung der Murstromdurchflussmengen [On the calculation of debris flow discharge] Wildbach- und Lawinenverbau 2, WienGoogle Scholar
  14. Hsu L, Dietrich WE, Sklar LS (2008) Experimental study of bedrock erosion by granular flows. J Geophys Res-Earth Surf 113(F2):F02001CrossRefGoogle Scholar
  15. Huebl J (2008) Ereignisdokumentation Prozesse: Wasser. Universitaetskurs Ereignisdokumentation. Institut fuer Alpine Naturgefahren. Universitaet fuer Bodenkultur. Wien [unpublished report]Google Scholar
  16. Huebl J, Bunza G, Hafner K, Klaus W (2003) Stummer Zeugen Katalog. In: Projektteam ETAlp (Bundesministerium fuer Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft), Kompendium zu ETAlp-Erosion, Transport in alpinen Systemen, 48; Bundesministerium fuer Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft. WienGoogle Scholar
  17. Huebl J, Totschnig R, Sitter F, Mayer B, Schneider A (2010) Historische Ereignisse – Band 1–3: Auswertung von Wildbach Schadereignissen in Oesterreich. IAN Report 111, Institut fuer Alpine Naturgefahren. Universitaet fuer Bodenkultur. Wien [unpublished report]Google Scholar
  18. Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35:978–992CrossRefGoogle Scholar
  19. Hungr O, Morgan G, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677CrossRefGoogle Scholar
  20. Jakob M (2005) Debris-flow hazard analysis. In: Jakob M, Hung O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 411–444CrossRefGoogle Scholar
  21. Jomelli V (2012) Lichenometric dating of debris avalanche deposits with an example from the French Alps. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau M (eds) Dating torrential processes on fans and cones -- methods and their application for hazard and risk assessment. Advances in Global Change Research. Springer, Dordrecht/Heidelberg/London/New YorkGoogle Scholar
  22. Kienholz H (1998) Early warning systems related to mountain hazards. In: Proceedings of the international conference on early warning systems for the reduction of natural disasters EWC’98, 7–11 Sept 1998, PotsdamGoogle Scholar
  23. Marchi L, Tecca PR (1995) Alluvial fans of the Eastern Italien Alps: morphometry and depositional processes. Geodinamica Acta (Paris) 8(1):20–27Google Scholar
  24. Marchi L, Arattano M, Deganutti A (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17CrossRefGoogle Scholar
  25. Markhart G, Kohl B, Sotier B, Schauer T, Bunza G, Stern R (2004) Provisorische Geländeanleitung zur Abschätzung des Oberflächenabflussbeiwertes auf alpinen Boden-/Vegetationseinheiten bei konvektiven Starkregen [A simple code of practice for assessment of surface runoff coefficients for alpine soil-/vegetation units in torrential rain]. BFW-Dokumentation; Schriftenreihe des Bundesamtes und Forschungszentrums fuer Wald, No. 3. WienGoogle Scholar
  26. Miall AD (1996) The geology of fluvial deposits. Springer, BerlinGoogle Scholar
  27. O’Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119(2):244–261CrossRefGoogle Scholar
  28. Salzer J (1886) Ueber den Stand der Wildbachverbauung in Oesterreich. Verlag des krainisch-küstenlaendischen Forstvereins. WienGoogle Scholar
  29. Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Process Landforms 35:157–173Google Scholar
  30. Scheuner T, Keusen HR, McArdell BW, Huggel C (2009) Murgangmodellierung mit dynamisch-physikalischem und GIS-basiertem Fliessmodell. Wasser Energie Luft 101(1):15–21Google Scholar
  31. Schirmer W (1988) Murstappel bei St. Virgil/Suedtirol, Exkursionsfuehrer. Deutscher Arbeitskreis fuer Geomorphologie 15Google Scholar
  32. Schneuwly-Bollschweiler M, Stoffel M (2012) Dendrogeomorphology -- tracking past events with tree rings. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau M (eds) Dating torrential processes on fans and cones -- methods and their application for hazard and risk assessment. Advances in Global Change Research. Springer, Dordrecht/Heidelberg/London/New YorkGoogle Scholar
  33. Skermer NA, VanDine DF (2005) Debris flows in history. In: Jakob M, Hung O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 25–52CrossRefGoogle Scholar
  34. Stiny J (1910) Die Muren [Debris flows]. Wagner, InnsbruckGoogle Scholar
  35. Stock JD, Dietrich WE (2003) Valley incision by debris flows: evidence of a topographic signature. Water Resour Res 39(4):1089. doi: 10.1029/2001WR001057 CrossRefGoogle Scholar
  36. Takahashi T (1991) Debris flow, IAHR monograph series. Balkema Publishers, RotterdamGoogle Scholar
  37. Zeller J (1995) Das Gewässernetz, ein quantitativer Indikator fuer den Charakter von Kleineinzugsgebieten. Wildbach- und Lawinenverbau, 59/128Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Civil Engineering and Natural Hazards, Institute of Mountain Risk EngineeringUniversity of Natural Resources and Life Sciences, ViennaViennaAustria

Personalised recommendations