Debris-Flow Runout and Deposition on the Fan

  • Dieter Rickenmann
  • Christian Scheidl
Part of the Advances in Global Change Research book series (AGLO, volume 47)


Debris flows are at the interface of several research directions dealing with natural hazards processes. It is therefore not surprising that methods for the prediction of flow and runout of debris flows have similarities to approaches originally developed for snow or debris avalanches and streamflow hydraulics (Körner 1980; Lied and Bakkehoi 1980; Perla et al. 1980; Iverson 1997). However, debris-flow volume and bulk flow behaviour may change during travel through the channel, e.g. by entrainment of loose sediment and/or incorporation of water from a tributary. At present, no generally applicable model is able to cover the range of all possible material mixtures and event scenarios. This complexity results in different torrential processes and results in a large variety of approaches to predict debris-flow mobility.


Debris Flow Snow Avalanche Runout Distance Hyperconcentrated Flow Total Travel Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The study has been funded by the Austrian Science Fund (FWF) project no. L 180-N10 on ‘Runout prediction of debris flows’. The Swiss Federal Office for Environment supported the analysis of the Swiss debris-flow events of 2005. Markus Zimmermann provided the original field data concerning the 1987 debris flows in the Swiss Alps.


  1. Bardou E (2002) Methodologie de diagnostic des laves torrentielles sur un bassin versant alpin. PhD thesis, École Polytechnique Fédérale de Lausanne, p 382Google Scholar
  2. Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmyfluid model with active/passive longitudinal straining. J Glaciol 45:212–254CrossRefGoogle Scholar
  3. Beguería S, Asch TWJV, Malet J-P, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazard Earth Syst Sci 9:1897–1909CrossRefGoogle Scholar
  4. Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90:144–161CrossRefGoogle Scholar
  5. Cannon SH (1993) An empirical model for the volume-change behavior of debris flows. In: Shen HW, Su ST, Wen F (eds) Hydraulic engineering’93, vol 2. American Society of Civil Engineers, New York, pp 1768–1773Google Scholar
  6. Chau KT, Chan LC, Wai WH (2000) Shape of deposition fan and runout distance of debris-flow: Effects of granular and contents. In: Wieczorek, Naeser (eds) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp 387–395Google Scholar
  7. Chen J, Chang S, Tsang Y, Shieh C (2007) Empirical relationships for deposited length of debris-flow: a case study in Taiwan. In: Chen-lung C, Major JJ (eds) 4th International conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Chengdu, China. Millpress, RotterdamGoogle Scholar
  8. Christen M, Bartelt P, Kowalski J (2010) Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results. Ann Glaciol 51:161–168CrossRefGoogle Scholar
  9. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271CrossRefGoogle Scholar
  10. Costa JE (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker VR, Patton PC (eds) Flood Geomorphology, pp 113–122Google Scholar
  11. Coulthard TJ, Hicks DM, van de Wiel MJ (2007) Cellular modelling of river catchments and reaches: advantages, limitations and prospects. Geomorphology 90:192–207CrossRefGoogle Scholar
  12. Crosta G, Agliardi F (2003) A methodology for physically-based rockfall hazard assessment. Nat Hazard Earth Syst Sci 3:407–422CrossRefGoogle Scholar
  13. Crosta G, Cucchiaro S, Frattini P (2003) Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials. In: Rickenmann D, Chen (eds) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 821–833Google Scholar
  14. Crosta GB, Frattini P (2004) Controls on modern alluvial fan processes in the Central Alps, Northern Italy. Earth Surf Process Landf 29:267–293CrossRefGoogle Scholar
  15. D’Ambrosio D, Gregorio SD, Iovine G, Lupiano V, Rongo R, Spataro W (2003) First simulations of the Sarno debris flows through Cellular Automata modelling. Geomorphology 54:91–117CrossRefGoogle Scholar
  16. D’Ambrosio D, Spataro W, Iovine G (2006) Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: an application to debris flows. Comput Geosci 32:861–875CrossRefGoogle Scholar
  17. Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994CrossRefGoogle Scholar
  18. Gamma P (2000) dfwalk – Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. Geographica Bernensia G66. Geographisches Institut der Universität Bern, Bern, p 144Google Scholar
  19. Gertsch E, Kienholz H (2005) Ereignisdokumentation StorMe, Unwetter 22./23. August 2005, Gemeinde Lütschental. Angewandte Geomorphologie und Naturrisiken AGNAT, Geographisches Institut Universität Bern, BernGoogle Scholar
  20. Griswold JP (2004) Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Master’s thesis, Portland State University, p 200Google Scholar
  21. Griswold JP, Iverson RM (2008) Mobility statistics and automated hazard mapping for debris flows and rock avalanches, U.S. Geological Survey scientific investigations report 5276. U.S. Geological Survey, Reston, p 59Google Scholar
  22. Hochschwarzer M (2009) Vergleich von Simulationsmodellen zur Reichweitenabschätzung alpiner Murgänge am Beispiel Südtiroler Ereignisse. Master’s thesis, University of Applied Life Sciences and Natural Resources, p 135Google Scholar
  23. Hose A (2007) Einfluss der Topographie auf die Murgangsimulation im Ablagerungsbereich und Implikationen auf die Gefahrenbeurteilung. Master thesis, Universität Stuttgart, Institut für Geographie, p 130Google Scholar
  24. Hübl J, Kienholz H, Loipersberger A (2002) DOMODIS – Documentation of Mountain Disasters, State of Discussion in the European Mountain Areas. International Research Society INTERPRAEVENT, Schriftenreihe 1, Handbuch 1, p 38Google Scholar
  25. Hungr O, Morgan G, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677CrossRefGoogle Scholar
  26. Hungr O, Evans S, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238Google Scholar
  27. Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102:152–163CrossRefGoogle Scholar
  28. Iovine G, D’Ambrosio D, Gregorio SD (2005) Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology 66:287–303CrossRefGoogle Scholar
  29. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296CrossRefGoogle Scholar
  30. Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984CrossRefGoogle Scholar
  31. Jackson L, Kostaschuk R, McDonald G (1987) Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. Geol Soc Am Rev Eng Geol 7:115–124Google Scholar
  32. Jackson L, Hungr O, Gardner J, Mackay C (1989) Cathedral Mountain debris flows, Canada. Bull Int Assoc Eng Geol 40:35–54CrossRefGoogle Scholar
  33. Jakob M, Anderson D, Fuller T, Hungr O, Ayotte D (2000) An unusually large debris flow at Hummingbird Creek, Mara Lake, British Columbia. Can Geotech J 37:1109–1125CrossRefGoogle Scholar
  34. Jordan RP (1994) Debris flows in the southern coast mountains, British Columbia: dynamic behaviour and physical properties. PhD thesis, The University of British Columbia, p 272Google Scholar
  35. Kobayashi Y (1985) A catastrophic debris avalanche induced by the 1923 great Kanto earthquake. J Nat Disaster Sci 7:1–9Google Scholar
  36. Körner H (1980) Modelle zur Berechnung der Bergsturz- und Lawinenberechnung. In: Internationales Symposium “Interpraevent”, vol 2, Klagenfurt, Austria, pp 15–55Google Scholar
  37. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  38. Lied K, Bakkehoi S (1980) Empirical calculations of snow-avalanche run-out distance, based on topographic parameters. J Glaciol 26(94):165–177Google Scholar
  39. Marchi L, Brochot S (2000) Les cônes de díjection torrentiels dans les Alpes francaises. Morphomètrie et processus de transport solide torrential. Rev Gèogr Alpine 88(3):23–38CrossRefGoogle Scholar
  40. Marchi L, D'Agostino V (2004) Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surf Process Landf 29:207–220Google Scholar
  41. Marchi L, Tecca P (1995) Alluvial fans of the Eastern Italian Alps: morphology and depositional processes. Geodinamica Acta 8:20–27Google Scholar
  42. Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142CrossRefGoogle Scholar
  43. Melton MA (1965) The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona. J Geol 73:1–38CrossRefGoogle Scholar
  44. Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazard Earth Syst Sci 6:155–165CrossRefGoogle Scholar
  45. O’Brien JS, Julien PY, Fullerton W (1993) Two-dimensional water flood and mudflood simulation. J Hydraul Eng 119:244–260CrossRefGoogle Scholar
  46. Oramas Dorta D, Toyos G, Oppenheimer C, Pareschi M, Zanchetta G (2007) Empirical modelling of the May 1998 small debris flows in Sarno (Italy) using LAHARZ. Nat Hazard 40:381–396CrossRefGoogle Scholar
  47. Perla R, Cheng T, McClung D (1980) A two parameter model of snow avalanche motion. J Glaciol 26:197–208Google Scholar
  48. Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazard Earth Syst Sci 8:961–971CrossRefGoogle Scholar
  49. NDR Consulting Zimmermann/Niederer und Pozzi Umwelt AG (2006) Lokale lösungsorientierte Ereignisanalyse, Glyssibach, Bericht zum Vorprojekt. Tech. rep., Tiefbauamt des Kantons BernGoogle Scholar
  50. Prochaska AB, Santi PM, Higgins J, Cannon SH (2008) Debris-flow runout predictions based on the average channel slope (ACS). Eng Geol 98:29–40CrossRefGoogle Scholar
  51. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazard 19:47–77CrossRefGoogle Scholar
  52. Rickenmann D, Weber D (2000) Flow resistance of natural and experimental debris-flows in torrent channels. In: Wieczorek, Naeser (eds) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp 245–254Google Scholar
  53. Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Praxis/Springer, Berlin/Heidelberg, pp 305–324CrossRefGoogle Scholar
  54. Rickenmann D, Koschni A (2010) Sediment loads due to fluvial transport and debris flows during the 2005 flood events in Switzerland. Hydrol Process 24:993–1007. doi:10.1002/hyp. 7536CrossRefGoogle Scholar
  55. Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10:241–264CrossRefGoogle Scholar
  56. Rickenmann D, Hunzinger L, Koschni A (2008) Hochwasser und Sedimenttransport während des Unwetters vom August 2005 in der Schweiz. In: Mikos M, Huebl J, Koboltschnig G (eds) Schutz des Lebensraumes vor Hochwasser, Muren, Massenbewegungen und Lawinen. Interpraevent 26–30 May 2008, Dornbirn, Vorarlberg, Austria. Conference proceedings, vol 1. Internat. Research Society Interpraevent, Klagenfurt, pp 465–476Google Scholar
  57. Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189Google Scholar
  58. Scheidl C, Rickenmann D (2008) Depositional characteristics and runout of Alpine debris flows. In: Conference proceedings Interpraevent’08, vol 1, Dornbirn, Austria, pp 477–488Google Scholar
  59. Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Process Landf 35:157–173Google Scholar
  60. Scheuner T, Keusen HR, McArdell BW, Huggel C (2009) Murgangmodellierung mit dynamisch physikalischem und GIS-basiertem Fliessmodell, Fallbeispiel Rotlauigraben, Guttannen, August 2005. Wasser Energie Luft 101:15–21Google Scholar
  61. Schraml C (2007) Ablagerung von Feststoffen auf Wildbachkegeln. Master’s thesis, University of Natural Resources and Life Sciences, ViennaGoogle Scholar
  62. Takahashi T (1991) Debris flow. A.A. Balkema, Rotterdam/BrookfieldGoogle Scholar
  63. Takahashi T, Yoshida H (1979) Study on the deposition of debris flows, part 1-deposition due to abrupt change of bed slope. Annu Disaster Prev Res Inst Kyoto Univ 22:315–328Google Scholar
  64. Tecca P, Genevois R, Deganutti A, Armento M (2007) Numerical modelling of two debris flows in the Dolomites (Northeastern Italian Alps). In: Chen-lung C, Major JJ (eds) 4th International conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Chengdu, China. Millpress, RotterdamGoogle Scholar
  65. Toyos G, Gunasekera R, Zanchetta G, Oppenheimer C, Sulpizio R, Favalli M, Pareschi MT (2008) GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surf Process Landf 33:1693–1708CrossRefGoogle Scholar
  66. Tsai Y-F (2006) Three-dimensional topography of debris-flow fan. J Hydraul Eng 132:307–318CrossRefGoogle Scholar
  67. VAW (1992) Murgänge 1987, Dokumentation und Analyse. Bericht Nr. 97.6 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich (unpublished report)Google Scholar
  68. Wieczorek GF, Larsen MC, Eaton LS, Morgan BA, Blair JL (2001) Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation. U.S. Geological Survey, RestonGoogle Scholar
  69. Wilford D, Sakals M, Innes J, Sidle R, Bergerud W (2004) Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 1:61–66Google Scholar
  70. Yu F-C, Chen C-Y, Chen T-C, Hung F-Y, Lin S-C (2006) A GIS process for delimitating areas potentially endangered by debris flow. Nat Hazard 37:169–189CrossRefGoogle Scholar
  71. Zimmermann M, Mani P, Gamma P (1997) Murganggefahr und Klimaänderung – ein GIS-basierter Ansatz. vdf Hochschulverlag AG an der ETH Zürich: 162Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Institute of Mountain Risk Engineering, Department of Civil Engineering and Natural HazardsUniversity of Natural Resources and Life Sciences-ViennaViennaAustria

Personalised recommendations