Skip to main content

Debris-Flow Runout and Deposition on the Fan

  • Chapter
  • First Online:
Dating Torrential Processes on Fans and Cones

Part of the book series: Advances in Global Change Research ((AGLO,volume 47))

Abstract

Debris flows are at the interface of several research directions dealing with natural hazards processes. It is therefore not surprising that methods for the prediction of flow and runout of debris flows have similarities to approaches originally developed for snow or debris avalanches and streamflow hydraulics (Körner 1980; Lied and Bakkehoi 1980; Perla et al. 1980; Iverson 1997). However, debris-flow volume and bulk flow behaviour may change during travel through the channel, e.g. by entrainment of loose sediment and/or incorporation of water from a tributary. At present, no generally applicable model is able to cover the range of all possible material mixtures and event scenarios. This complexity results in different torrential processes and results in a large variety of approaches to predict debris-flow mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bardou E (2002) Methodologie de diagnostic des laves torrentielles sur un bassin versant alpin. PhD thesis, École Polytechnique Fédérale de Lausanne, p 382

    Google Scholar 

  • Bartelt P, Salm B, Gruber U (1999) Calculating dense-snow avalanche runout using a Voellmyfluid model with active/passive longitudinal straining. J Glaciol 45:212–254

    Article  Google Scholar 

  • Beguería S, Asch TWJV, Malet J-P, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazard Earth Syst Sci 9:1897–1909

    Article  Google Scholar 

  • Berti M, Simoni A (2007) Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology 90:144–161

    Article  Google Scholar 

  • Cannon SH (1993) An empirical model for the volume-change behavior of debris flows. In: Shen HW, Su ST, Wen F (eds) Hydraulic engineering’93, vol 2. American Society of Civil Engineers, New York, pp 1768–1773

    Google Scholar 

  • Chau KT, Chan LC, Wai WH (2000) Shape of deposition fan and runout distance of debris-flow: Effects of granular and contents. In: Wieczorek, Naeser (eds) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp 387–395

    Google Scholar 

  • Chen J, Chang S, Tsang Y, Shieh C (2007) Empirical relationships for deposited length of debris-flow: a case study in Taiwan. In: Chen-lung C, Major JJ (eds) 4th International conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Chengdu, China. Millpress, Rotterdam

    Google Scholar 

  • Christen M, Bartelt P, Kowalski J (2010) Back calculation of the In den Arelen avalanche with RAMMS: interpretation of model results. Ann Glaciol 51:161–168

    Article  Google Scholar 

  • Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33:260–271

    Article  Google Scholar 

  • Costa JE (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker VR, Patton PC (eds) Flood Geomorphology, pp 113–122

    Google Scholar 

  • Coulthard TJ, Hicks DM, van de Wiel MJ (2007) Cellular modelling of river catchments and reaches: advantages, limitations and prospects. Geomorphology 90:192–207

    Article  Google Scholar 

  • Crosta G, Agliardi F (2003) A methodology for physically-based rockfall hazard assessment. Nat Hazard Earth Syst Sci 3:407–422

    Article  Google Scholar 

  • Crosta G, Cucchiaro S, Frattini P (2003) Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials. In: Rickenmann D, Chen (eds) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 821–833

    Google Scholar 

  • Crosta GB, Frattini P (2004) Controls on modern alluvial fan processes in the Central Alps, Northern Italy. Earth Surf Process Landf 29:267–293

    Article  Google Scholar 

  • D’Ambrosio D, Gregorio SD, Iovine G, Lupiano V, Rongo R, Spataro W (2003) First simulations of the Sarno debris flows through Cellular Automata modelling. Geomorphology 54:91–117

    Article  Google Scholar 

  • D’Ambrosio D, Spataro W, Iovine G (2006) Parallel genetic algorithms for optimising cellular automata models of natural complex phenomena: an application to debris flows. Comput Geosci 32:861–875

    Article  Google Scholar 

  • Fannin RJ, Wise MP (2001) An empirical-statistical model for debris flow travel distance. Can Geotech J 38:982–994

    Article  Google Scholar 

  • Gamma P (2000) dfwalk – Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. Geographica Bernensia G66. Geographisches Institut der Universität Bern, Bern, p 144

    Google Scholar 

  • Gertsch E, Kienholz H (2005) Ereignisdokumentation StorMe, Unwetter 22./23. August 2005, Gemeinde Lütschental. Angewandte Geomorphologie und Naturrisiken AGNAT, Geographisches Institut Universität Bern, Bern

    Google Scholar 

  • Griswold JP (2004) Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Master’s thesis, Portland State University, p 200

    Google Scholar 

  • Griswold JP, Iverson RM (2008) Mobility statistics and automated hazard mapping for debris flows and rock avalanches, U.S. Geological Survey scientific investigations report 5276. U.S. Geological Survey, Reston, p 59

    Google Scholar 

  • Hochschwarzer M (2009) Vergleich von Simulationsmodellen zur Reichweitenabschätzung alpiner Murgänge am Beispiel Südtiroler Ereignisse. Master’s thesis, University of Applied Life Sciences and Natural Resources, p 135

    Google Scholar 

  • Hose A (2007) Einfluss der Topographie auf die Murgangsimulation im Ablagerungsbereich und Implikationen auf die Gefahrenbeurteilung. Master thesis, Universität Stuttgart, Institut für Geographie, p 130

    Google Scholar 

  • Hübl J, Kienholz H, Loipersberger A (2002) DOMODIS – Documentation of Mountain Disasters, State of Discussion in the European Mountain Areas. International Research Society INTERPRAEVENT, Schriftenreihe 1, Handbuch 1, p 38

    Google Scholar 

  • Hungr O, Morgan G, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677

    Article  Google Scholar 

  • Hungr O, Evans S, Bovis MJ, Hutchinson JN (2001) A review of the classification of landslides of the flow type. Environ Eng Geosci 7:221–238

    Google Scholar 

  • Hürlimann M, Rickenmann D, Medina V, Bateman A (2008) Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng Geol 102:152–163

    Article  Google Scholar 

  • Iovine G, D’Ambrosio D, Gregorio SD (2005) Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology 66:287–303

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Iverson RM, Schilling SP, Vallance JW (1998) Objective delineation of lahar-inundation hazard zones. Geol Soc Am Bull 110:972–984

    Article  Google Scholar 

  • Jackson L, Kostaschuk R, McDonald G (1987) Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. Geol Soc Am Rev Eng Geol 7:115–124

    Google Scholar 

  • Jackson L, Hungr O, Gardner J, Mackay C (1989) Cathedral Mountain debris flows, Canada. Bull Int Assoc Eng Geol 40:35–54

    Article  Google Scholar 

  • Jakob M, Anderson D, Fuller T, Hungr O, Ayotte D (2000) An unusually large debris flow at Hummingbird Creek, Mara Lake, British Columbia. Can Geotech J 37:1109–1125

    Article  Google Scholar 

  • Jordan RP (1994) Debris flows in the southern coast mountains, British Columbia: dynamic behaviour and physical properties. PhD thesis, The University of British Columbia, p 272

    Google Scholar 

  • Kobayashi Y (1985) A catastrophic debris avalanche induced by the 1923 great Kanto earthquake. J Nat Disaster Sci 7:1–9

    Google Scholar 

  • Körner H (1980) Modelle zur Berechnung der Bergsturz- und Lawinenberechnung. In: Internationales Symposium “Interpraevent”, vol 2, Klagenfurt, Austria, pp 15–55

    Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Lied K, Bakkehoi S (1980) Empirical calculations of snow-avalanche run-out distance, based on topographic parameters. J Glaciol 26(94):165–177

    Google Scholar 

  • Marchi L, Brochot S (2000) Les cônes de díjection torrentiels dans les Alpes francaises. Morphomètrie et processus de transport solide torrential. Rev Gèogr Alpine 88(3):23–38

    Article  Google Scholar 

  • Marchi L, D'Agostino V (2004) Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surf Process Landf 29:207–220

    Google Scholar 

  • Marchi L, Tecca P (1995) Alluvial fans of the Eastern Italian Alps: morphology and depositional processes. Geodinamica Acta 8:20–27

    Google Scholar 

  • Medina V, Hürlimann M, Bateman A (2008) Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides 5:127–142

    Article  Google Scholar 

  • Melton MA (1965) The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona. J Geol 73:1–38

    Article  Google Scholar 

  • Naef D, Rickenmann D, Rutschmann P, McArdell BW (2006) Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat Hazard Earth Syst Sci 6:155–165

    Article  Google Scholar 

  • O’Brien JS, Julien PY, Fullerton W (1993) Two-dimensional water flood and mudflood simulation. J Hydraul Eng 119:244–260

    Article  Google Scholar 

  • Oramas Dorta D, Toyos G, Oppenheimer C, Pareschi M, Zanchetta G (2007) Empirical modelling of the May 1998 small debris flows in Sarno (Italy) using LAHARZ. Nat Hazard 40:381–396

    Article  Google Scholar 

  • Perla R, Cheng T, McClung D (1980) A two parameter model of snow avalanche motion. J Glaciol 26:197–208

    Google Scholar 

  • Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazard Earth Syst Sci 8:961–971

    Article  Google Scholar 

  • NDR Consulting Zimmermann/Niederer und Pozzi Umwelt AG (2006) Lokale lösungsorientierte Ereignisanalyse, Glyssibach, Bericht zum Vorprojekt. Tech. rep., Tiefbauamt des Kantons Bern

    Google Scholar 

  • Prochaska AB, Santi PM, Higgins J, Cannon SH (2008) Debris-flow runout predictions based on the average channel slope (ACS). Eng Geol 98:29–40

    Article  Google Scholar 

  • Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazard 19:47–77

    Article  Google Scholar 

  • Rickenmann D, Weber D (2000) Flow resistance of natural and experimental debris-flows in torrent channels. In: Wieczorek, Naeser (eds) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp 245–254

    Google Scholar 

  • Rickenmann D (2005) Runout prediction methods. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Praxis/Springer, Berlin/Heidelberg, pp 305–324

    Chapter  Google Scholar 

  • Rickenmann D, Koschni A (2010) Sediment loads due to fluvial transport and debris flows during the 2005 flood events in Switzerland. Hydrol Process 24:993–1007. doi:10.1002/hyp. 7536

    Article  Google Scholar 

  • Rickenmann D, Laigle D, McArdell BW, Hübl J (2006) Comparison of 2D debris-flow simulation models with field events. Comput Geosci 10:241–264

    Article  Google Scholar 

  • Rickenmann D, Hunzinger L, Koschni A (2008) Hochwasser und Sedimenttransport während des Unwetters vom August 2005 in der Schweiz. In: Mikos M, Huebl J, Koboltschnig G (eds) Schutz des Lebensraumes vor Hochwasser, Muren, Massenbewegungen und Lawinen. Interpraevent 26–30 May 2008, Dornbirn, Vorarlberg, Austria. Conference proceedings, vol 1. Internat. Research Society Interpraevent, Klagenfurt, pp 465–476

    Google Scholar 

  • Rickenmann D, Zimmermann M (1993) The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology 8:175–189

    Google Scholar 

  • Scheidl C, Rickenmann D (2008) Depositional characteristics and runout of Alpine debris flows. In: Conference proceedings Interpraevent’08, vol 1, Dornbirn, Austria, pp 477–488

    Google Scholar 

  • Scheidl C, Rickenmann D (2010) Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf Process Landf 35:157–173

    Google Scholar 

  • Scheuner T, Keusen HR, McArdell BW, Huggel C (2009) Murgangmodellierung mit dynamisch physikalischem und GIS-basiertem Fliessmodell, Fallbeispiel Rotlauigraben, Guttannen, August 2005. Wasser Energie Luft 101:15–21

    Google Scholar 

  • Schraml C (2007) Ablagerung von Feststoffen auf Wildbachkegeln. Master’s thesis, University of Natural Resources and Life Sciences, Vienna

    Google Scholar 

  • Takahashi T (1991) Debris flow. A.A. Balkema, Rotterdam/Brookfield

    Google Scholar 

  • Takahashi T, Yoshida H (1979) Study on the deposition of debris flows, part 1-deposition due to abrupt change of bed slope. Annu Disaster Prev Res Inst Kyoto Univ 22:315–328

    Google Scholar 

  • Tecca P, Genevois R, Deganutti A, Armento M (2007) Numerical modelling of two debris flows in the Dolomites (Northeastern Italian Alps). In: Chen-lung C, Major JJ (eds) 4th International conference on debris-flow hazards mitigation: mechanics, prediction, and assessment, Chengdu, China. Millpress, Rotterdam

    Google Scholar 

  • Toyos G, Gunasekera R, Zanchetta G, Oppenheimer C, Sulpizio R, Favalli M, Pareschi MT (2008) GIS-assisted modelling for debris flow hazard assessment based on the events of May 1998 in the area of Sarno, Southern Italy: II. Velocity and dynamic pressure. Earth Surf Process Landf 33:1693–1708

    Article  Google Scholar 

  • Tsai Y-F (2006) Three-dimensional topography of debris-flow fan. J Hydraul Eng 132:307–318

    Article  Google Scholar 

  • VAW (1992) Murgänge 1987, Dokumentation und Analyse. Bericht Nr. 97.6 der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich (unpublished report)

    Google Scholar 

  • Wieczorek GF, Larsen MC, Eaton LS, Morgan BA, Blair JL (2001) Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation. U.S. Geological Survey, Reston

    Google Scholar 

  • Wilford D, Sakals M, Innes J, Sidle R, Bergerud W (2004) Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 1:61–66

    Google Scholar 

  • Yu F-C, Chen C-Y, Chen T-C, Hung F-Y, Lin S-C (2006) A GIS process for delimitating areas potentially endangered by debris flow. Nat Hazard 37:169–189

    Article  Google Scholar 

  • Zimmermann M, Mani P, Gamma P (1997) Murganggefahr und Klimaänderung – ein GIS-basierter Ansatz. vdf Hochschulverlag AG an der ETH Zürich: 162

    Google Scholar 

Download references

Acknowledgements

The study has been funded by the Austrian Science Fund (FWF) project no. L 180-N10 on ‘Runout prediction of debris flows’. The Swiss Federal Office for Environment supported the analysis of the Swiss debris-flow events of 2005. Markus Zimmermann provided the original field data concerning the 1987 debris flows in the Swiss Alps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Rickenmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rickenmann, D., Scheidl, C. (2013). Debris-Flow Runout and Deposition on the Fan. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (eds) Dating Torrential Processes on Fans and Cones. Advances in Global Change Research, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4336-6_5

Download citation

Publish with us

Policies and ethics