Skip to main content

Sediment Transport Processes

  • Chapter
  • First Online:
Dating Torrential Processes on Fans and Cones

Part of the book series: Advances in Global Change Research ((AGLO,volume 47))

Abstract

Sediment transport processes have recently gained importance in river engineering, torrent control and reservoir management due to an increasing discrepancy between a surplus of sediments in upstream and a deficit in downstream river sections (Habersack et al. 2010b). This development leads to problems in flood protection (channel change), river engineering (e.g. riverbed degradation), hydropower generation (e.g. reservoir sedimentation) and the ecological status of running waters (e.g. loss of instream structures).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bagnold RA (1956) The flow of cohesionless grains in fluids. Philos Trans R Soc Lond Ser A Math Phys Sci 249(964):235–297

    Article  Google Scholar 

  • Brownlie WR (1983) Flow depth in sand-bed channels. J Hydraul Eng 109(7):959–990

    Article  Google Scholar 

  • Chiari M (2008) Numerical modelling of bedload transport in torrents and mountain streams. PhD thesis, Institute of Mountain Risk Engineering Vienna University of Natural Resources and Applied Life Sciences

    Google Scholar 

  • Chiari M, Friedl K, Rickenmann D (2010) A one dimensional bedload transport model for steep slopes. J Hydraul Res 48(2):152–160

    Article  Google Scholar 

  • Chow VT (1959) Open channel hydraulics. McGraw-Hill, New York

    Google Scholar 

  • Church M (2008) Multiple scales in rivers. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-Bed rivers VI – from process understanding to river restoration. Elsevier, Amsterdam, pp 3–32

    Google Scholar 

  • Church M, Jones D (1982) Channel bars in gravel bed rivers. In: Hey RD, Bathurst JD, Thorne CR (eds) Gravel Bed rivers fluvial processes, engineering and management. Wiley, Chichester, pp 291–338

    Google Scholar 

  • du Boys MP (1879) Etudes du régime et l’action exercée par les eaux sur un lit à fond de gravière indéfiniment affouiable. Ann Ponts Chaussees 5(18):141–195

    Google Scholar 

  • Einstein HA (1950) The bedload function for bedload transportation in open channel flows. Technical bulletin 1026. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • García MH (2008) Sediment transport and morphodynamics. In: García MH (ed) Sedimentation engineering: processes, measurements, modeling, and practice, Manuals and reports on engineering practice No. 110. ASCE, Reston

    Google Scholar 

  • Gessler J (1971) Beginning and ceasing of sediment motion. In: Shen Littleton HW (ed) River mechanics. Water Resources Publications, Littleton

    Google Scholar 

  • Graf WH (1971) Hydraulics of sediment transport. McGraw-Hill, New York

    Google Scholar 

  • Günther A (1971) Die kritische mittlere Sohlenschubspannung bei Geschiebemischungen unter Berück-sichtigung der Deckschichtbildung und der turbulenzbedingten Sohlenschub-spannungsschwankugen. PhD thesis, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie. Zürich ETH

    Google Scholar 

  • Habersack H (1997) Catchment-wide, sectional and local aspects in sediment transport modelling and monitoring. J Sediment Res 12(3):120–130

    Google Scholar 

  • Habersack H (1999) Relative Bedeutung von Abrieb und selektivem Transport in einem anthropogen veränderten Fließgewässer Zeitschrift für Kulturtechnik und Landentwicklung, 40(4):145–192

    Google Scholar 

  • Habersack H (2000) The river scaling concept (RSC): a basis for ecological assessments. Hydrobiologia 422–423:49–60

    Article  Google Scholar 

  • Habersack H (2001) Radio-tracking gravel particles in a large braided river in New Zealand: a field test of the stochastic theory of bed load transport proposed by Einstein. J Hydrol Process 15(3):377–391

    Article  Google Scholar 

  • Habersack H, Laronne J (2002) Evaluation and improvement of bed load discharge formulas based on Helley-Smith sampling in an alpine gravel bed river. J Hydraul Eng 128(5):484–499

    Article  Google Scholar 

  • Habersack H, Seitz H, Laronne JB (2008) Spatio temporal variability of bedload transport rate: analysis and 2D modelling approach. J Geodinamica Acta 21(1–2):67–79

    Article  Google Scholar 

  • Habersack H, Seitz H, Liedermann M (2010a) Integrated automatic bedload transport monitoring. In: Gray JR, Laronne JB, Marr JDG (eds) Bedload-surrogate monitoring technologies, SIR 2010-5091. U.S. Geological Survey, Reston, pp 218–235

    Google Scholar 

  • Habersack H, Schober B, Krapesch G, Jäger E, Muhar S, Poppe M, Preis S, Weiss M, Hauer C (2010b) Neue Ansätze im integrierten Hochwassermanagement: Floodplain Evaluation Matrix FEM, flussmorphologischer Raumbedarf FMRB und räumlich differenziertes Vegetationsmanagement. VeMaFLOOD Österreichische Wasser und Abfallwirtschaft 62(1–2):15–21

    Article  Google Scholar 

  • Habersack H, Tritthart M, Hengl M, Lalk P, Rickenmann D, Knoblauch H, Badura H, Gabriel H (2011) River modelling – sediment transport and river morphology. ÖWAV Arbeitsbehelf

    Google Scholar 

  • Hassan MA (2005) Characteristics of gravel bars in ephemeral streams. J Sediment Res 75:29–42

    Article  Google Scholar 

  • Hassan MA, Smith BJ, Hogan DL, Luzi DS, Zimmermann AE, Eaton BC (2008) Sediment storage and transport in coarse bed streams: scale considerations. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-Bed rivers VI – from process understanding to river restoration. Elsevier, Amsterdam, pp 473–497

    Google Scholar 

  • Hunziker RP, Jäggi M (2002) Grain sorting processes. J Hydraul Eng 128(12):1060–1068

    Article  Google Scholar 

  • Jäggi M (1992) Sedimenthaushalt und Stabilität von Flussbauten. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich Band 119. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Zürich

    Google Scholar 

  • Keulegan GH (1938) Laws of turbulent flow in open channels. J Nat Bur Stand 21:707–741

    Article  Google Scholar 

  • Klösch M, Tritthart M, Habersack H (2010) Modeling of near-bank flow velocities during flow events as basis for developing bank erosion equations. In: Dittrich A, Koll K, Aberle J, Geisenhainer P (eds) River flow 2010 – proceedings of the [fifth] international conference on fluvial hydraulics, Braunschweig, Germany, 2010, pp 1301–1308

    Google Scholar 

  • Knighton D (1984) Fluvial forms and processes. Edward Arnold, London, 218 pp

    Google Scholar 

  • Krapesch G, Hauer C, Habersack H (2010) Scale orientated prediction of river width changes due to extreme flood hazards. Nat Hazard Earth Syst Sci 11:1–12

    Google Scholar 

  • Kresser W (1964) Gedanken zur Geschiebe- und Schwebstoffführung der Gewässer. Österreichische Wasserwirtschaft 16, pp 6–11

    Google Scholar 

  • Lane EW (1955) The importance of fluvial morphology in hydraulic engineering. Am Soc Civil Eng 81:1–17

    Google Scholar 

  • Leeder MR (1983) On the interactions between turbulent flow, sediment transport and bedform mechanics in channelized flows. Mod Anc Fluv Syst 6:5–18

    Google Scholar 

  • Lewin J (1978) Floodplain geomorphology. Prog Phys Geogr 2:408–437

    Article  Google Scholar 

  • Liedermann M, Tritthart M, Habersack H (2011) Particle path characteristics at the large gravel-bed river Danube: results from a tracer study and numerical modelling, Earth Surf Process Landf (submitted)

    Google Scholar 

  • McEwan IK, Habersack H, Heald JGC (2001) Discrete particle modelling and active tracers: new techniques for studying sediment transport as a Lagrangian phenomenon. In: Mosley VMP (ed) Gravel-Bed rivers. New Zealand Hydrological Society, Wellington

    Google Scholar 

  • Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. In: Proceedings of the 2nd meeting of the IAHR International Association for Hydraulic Structures Research, Stockholm, Sweden, pp 39–64

    Google Scholar 

  • Meyer-Peter E, Müller R (1949) Eine Formel zur Berechnung des Geschiebetriebes. Schweiz Bauztg 67(3):29–32

    Google Scholar 

  • Montgomery DR, Buffington JM (1997) Channel-reach morphology in mountain drainage basins. Geol Soc Am Bull 109:596–611

    Article  Google Scholar 

  • Morvan HD, Knight D, Wright N, Tang X, Crossley A (2008) The concept of roughness in fluvial hydraulic and its formulation in 1D, 2D and 3D numerical simulation models. J Hydraul Eng 46(2):191–208

    Article  Google Scholar 

  • Nikuradse J (1933) Laws of flow in rough pipes, Technial memorandum 1292. National Advisory Comitee for Aeronautics, Washington, DC

    Google Scholar 

  • Palt S (2001) Sedimenttransportprozesse im Himalaya-Karakorum und ihre Bedeutung für Wasserkraftanlagen. PhD thesis, University of Karlsruhe

    Google Scholar 

  • Parker G, Klingeman PC (1982) On why gravel bed streams are paved. Water Resour Res 18(5):1409–1423

    Article  Google Scholar 

  • Pizzuto JE (2008) Streambank erosion and river width adjustment. In: Garcia M (ed) Sedimentation engineering. ASCE, Reston, pp 387–439

    Google Scholar 

  • Rickenmann D (1990) Bedload transport capacity of slurry flows at steep slopes. Dissertation ETH Nr. 9065, Zürich Mitteilungen Nr. 103 der Versuchsanstalt für Wasserbau, Hydrologie un Glaziologie der ETH Zürich

    Google Scholar 

  • Rickenmann D (1991) Hyperconcentrated flow and sediment transport at stepp slopes. J Hydraul Eng 117(11):1419–1439

    Article  Google Scholar 

  • Rickenmann D (1996) Fliessgeschwindigkeit in Wildbächen und Gebirgsflüssen. Wasser Energie Luft 88(11/12):298–304

    Google Scholar 

  • Rickenmann D, Brauner M (2003) Ansätze zur Abschätzung des Geschiebetransportes in Wildbächen und Gebrigsflüssen (Kompendium für das Projekt ETAlp). Wien, Institut für Alpine Naturgefahren und Forstliches Ingenieurwesen, Universität für Bodenkultur, Wien

    Google Scholar 

  • Rickenmann D, Chiari M, Friedl K (2006) Setrac – a sediment routing model for steep torrent channels. In: Ferreira R, Alves E, Leal J, Cardoso A (eds) River flow 2006. Taylor & Francis, London, pp 843–852

    Google Scholar 

  • Rinaldi M, Darby SE (2008) Modelling river-bank erosion processes and mass failure mechanisms:progress towards fully coupled simulations. In: Habersack H, Piégay H, Rinaldi M (eds) Gravel-Bed rivers VI – from process understanding to river restoration. Elsevier, Amsterdam, pp 703–737

    Google Scholar 

  • Schoklitsch A (1934) Der Geschiebetrieb und die Geschiebefracht. Wasserwirtschaft 39(4):1–7

    Google Scholar 

  • Schumm SA (1977) The fluvial system. Wiley, New York

    Google Scholar 

  • Shields A (1936) Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, Mitteilungen der Preußischen Versuchsanstalt für Wasser-, Erd- und Schiffbau 26. Triltsch & Huther, Berlin

    Google Scholar 

  • Simons DB, Richardson EV (1966) Resistance to flow in alluvial channels, US geological survey professional paper 422. US Government Printing Office, Washington, DC

    Google Scholar 

  • Smart GM, Habersack H (2007) Pressure fluctuations and gravel entrainment in rivers. J Hydraul Res 45(5):661–673

    Article  Google Scholar 

  • Smart GM, Jäggi MNR (1983) Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich 64. Edigenössischen Technischen Hochschule, Zürich, pp 9–188

    Google Scholar 

  • Sternberg H (1875) Untersuchungen über Längen- und Querprofil geschiebeführender Flüsse. Zeitschrift für Bauwesen 25, pp 483–506

    Google Scholar 

  • Strickler A (1923) Beiträge zur Frage der Geschwindigkeitsformel und der Rauhigkeitszahlen für Ströme, Kanäle und geschlossene Leitungen, Mitteilungen des Eidgenössischen Amtes für Wasserwirtschaft 16. Eidg. Amt für Wasserwirtschaft, Bern

    Google Scholar 

  • Thorne CR (1982) Process and mechanism of riverbank erosion. Wiley, Chichester

    Google Scholar 

  • Tritthart M (2005) Three-dimensional numerical modelling of turbulent river flow using polyhedral finite volumes. Phd thesis, Institut für Wasserbau und Ingenieurhydrologie, Fakultät für Bauingenieurwesen. Wien, Technischen Universität Wien

    Google Scholar 

  • Tritthart M, Schober B, Liedermann M, Habersack H (2009) Development of an integrated sediment transport model and its application to the Danube River. 33rd IAHR Congress: Water Engineering for a Sustainable Environment, Vancouver, Canada

    Google Scholar 

  • Tritthart M, Schober B, Habersack H (2011) Non-uniformity and layering in sediment transport modelling 1: flume simulations. J Hydraul Res. 49(3):325–334

    Google Scholar 

  • Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, Amsterdam

    Google Scholar 

  • Yen BC (1991) Channel flow resistance: centennial of Manning’s formula. Water Resource Publications, Colorado

    Google Scholar 

  • Zanke UCE (1990) Der Beginn der Geschiebebewegung als Wahrscheinlichkeitsproblem. Wasser & Boden 42(1):40–43

    Google Scholar 

  • Zanke UCE (2002) Hydromechanik der Gerinne und Küstengewässer. Parey, Berlin

    Book  Google Scholar 

  • Zanke UCE (2003) On the influence of turbulence on the initiation of sediment motion. Int J Sediment Res 18(1):17–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Habersack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Habersack, H., Kreisler, A. (2013). Sediment Transport Processes. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (eds) Dating Torrential Processes on Fans and Cones. Advances in Global Change Research, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4336-6_4

Download citation

Publish with us

Policies and ethics