Skip to main content

Dendrogeomorphology – Tracking Past Events with Tree Rings

  • Chapter
  • First Online:
Dating Torrential Processes on Fans and Cones

Part of the book series: Advances in Global Change Research ((AGLO,volume 47))

Abstract

For a realistic hazard assessment, knowledge of past events is of crucial importance. As archival data is generally fragmentary, additional information sources are needed for an appraisal of past and contemporary as well as for the prediction of potential future events. Tree rings represent a very valuable natural archive on past torrential activity as they may record the impact of events in their tree-ring series. In the past few years, dendrogeomorphology has evolved from a pure dating tool to a broad range of applications. Besides the reconstruction of frequencies, tree rings allow - if coupled with spatial positioning methods - the assessment of spread, runout distance, breakout locations or preferred flow path. Similarly, the wide field of applications includes the identification of magnitudes and triggers of debris-flow events if meteorological data is included.

Tree rings were first used for the pure dating of wood, for instance in archaeology. However, in the 1970s, researcher started drawing environmental information from tree rings as their growth reflects the influences to which a tree is exposed during its live. The term “dendrogeomorphology” was first introduced in the 1970s by Alestalo (1971) and refers to the study of geomorphic processes with tree rings. The method was then further developed by Shroder (1978, 1980) and Braam et~al. (1987a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–139

    Google Scholar 

  • Ballesteros JA, Bodoque JM, Díez A, Sánchez M, Stoffel M (2011a) Calibration of floodplain roughness and estimation of palaeoflood discharge based on tree-ring evidence and hydraulic modeling. J Hydrol 403:103–115

    Article  Google Scholar 

  • Ballesteros JA, Eguibar M, Bodoque JM, Díez A, Stoffel M, Gutiérrez I (2011b) Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic paleostage indicators. Hydrol Process 25:970–979

    Article  Google Scholar 

  • Bégin Y (2001) Tree-ring dating of extreme lake levels at the subarctic-boreal interface. Quat Res 55(2):133–139

    Article  Google Scholar 

  • Bodoque JM, Diez-Herrero A, Martin-Duque JF, Rubiales JM, Godfrey A, Pedraza J, Carrasco RM, Sanz MA (2005) Sheet erosion rates determined by using dendrogeomorphological analysis of exposed tree roots: two examples from Central Spain. Catena 64(1):81–102

    Article  Google Scholar 

  • Bollschweiler M, Stoffel M (2007) Debris flows on forested cones – reconstruction and comparison of frequencies in two catchments in Val Ferret, Switzerland. Nat Hazard Earth Syst Sci 7(2):207–218

    Article  Google Scholar 

  • Bollschweiler M, Stoffel M (2010) Changes and trends in debris-flow frequency since A.D. 1850 – results from the Swiss Alps. Holocene 20(6):907–916

    Article  Google Scholar 

  • Bollschweiler M, Stoffel M, Schneuwly DM (2008a) Dynamics in debris-flow activity on a forested cone – A case study using different dendroecological approaches. Catena 72(1):67–78

    Article  Google Scholar 

  • Bollschweiler M, Stoffel M, Schneuwly DM, Bourqui K (2008b) Traumatic resin ducts in Larix decidua stems impacted by debris flows. Tree Physiol 28(2):255–263

    Article  Google Scholar 

  • Braam RR, Weiss EEJ, Burrough PA (1987a) Dendrogeomorphological analysis of mass movement – a technical note on the research method. Catena 14(6):585–589

    Article  Google Scholar 

  • Braam RR, Weiss EEJ, Burrough PA (1987b) Spatial and temporal analysis of mass movement using dendrochronology. Catena 14(6):573–584

    Article  Google Scholar 

  • Butler DR, Malanson GP (1985) A reconstruction of snow-avalanche characteristics in Montana, USA, using vegetation indicators. J Glaciol 31(108):185–187

    Google Scholar 

  • Butler DR, Malanson GP, Oelfke JG (1987) Tree-ring analysis and natural hazard chronologies – minimum sample sizes and index values. Prof Geogr 39(1):41–47

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology – applications in the environmental sciences. Kluwer, London

    Google Scholar 

  • Friedman JM, Vincent KR, Shafroth PB (2005) Dating floodplain sediments using tree-ring response to burial. Earth Surf Process Landf 30(9):1077–1091

    Article  Google Scholar 

  • Grissino-Mayer HD (2003) A manual and tutorial for the proper use of an increment borer. Tree Ring Res 59(2):63–79

    Google Scholar 

  • Hitz OM, Gärtner H, Heinrich I, Monbaron M (2008) Wood anatomical changes in roots of European ash (Fraxinus excelsior L.) after exposure. Dendrochronologia 25(3):145–152

    Article  Google Scholar 

  • Hupp CR (1984) Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California. Environ Geol Water Sci 6(2):121–128

    Article  Google Scholar 

  • Hupp CR, Osterkamp WR, Thornton JL (1987) Dendrogeomorphic evidence and dating of recent debris flows on Mount Shasta, northern California, U.S. Geological Survey professional paper 1396B. United States Government Printing Office, Washington, DC, pp 1–39

    Google Scholar 

  • Jomelli V, Pech VP, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Chang 64(1–2):77–102

    Article  Google Scholar 

  • Jomelli V, Brunstein D, Grancher D, Pech P (2007) Is the response of hill slope debris flows to recent climate change univocal? A case study in the Massif des Ecrins (French Alps). Clim Chang 85(1–2):119–137

    Article  Google Scholar 

  • Kaczka RJ, Deslauriers A, Morin H (2010) High-precision dating of debris-flow events within the growing season. In: Stoffel M, Bollschweiler M, Butler DR, Luckman BH (eds) Tree rings and natural hazards – a state-of-the-art. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Kaitna R, Schneuwly-Bollschweiler M, Sausgruber T, Moser M, Stoffel M, Rudolf-Miklau F (2012) Susceptibility and triggers for debris flows: emergence, loading, release and entrainment. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau M (eds) Dating torrential processes on fans and cones -- methods and their application for hazard and risk assessment. Advances in Global Change Research. Springer, Dordrecht/Heidelberg/London/New York

    Google Scholar 

  • LaMarche V (1961) Rate of slope erosion in the White Mountains, California. Geol Soc Am Bull 72(10):1579–1580

    Article  Google Scholar 

  • Larson PR (1994) The vascular cambium. Development and structure. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Luchi N, Ma R, Capretti P, Bonello P (2005) Systemic induction of traumatic resin ducts and resin flow in Austrian pine by wounding and inoculation with Sphaeropsis sapinea and Diplodia scrobiculata. Planta 221(1):75–84

    Article  CAS  Google Scholar 

  • Mattheck C (1993) Design in der Natur. Rombach Wissenschaft, Freiburg

    Google Scholar 

  • May CL, Gresswell RE (2004) Spatial and temporal patterns of debris-flow deposition in the Oregon Coast Range, USA. Geomorphology 57(3–4):135–149

    Article  Google Scholar 

  • Mayer B, Stoffel M, Bollschweiler M, Hübl J, Rudolf-Miklau F (2010) Frequency and spread of debris floods on fans: a dendrogeomorphic case-study from a dolomite catchment in the Austrian Alps. Geomorphology 118:199–206

    Article  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple JC, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. C R Biol 327(9–10):889–901

    Article  CAS  Google Scholar 

  • Ruel JJ, Ayres MP, Lorio PL (1998) Loblolly pine responds to mechanical wounding with increased resin flow. Can J For Res-Revue Canadienne De Recherche Forestiere 28(4):596–602

    Article  Google Scholar 

  • Ruiz-Villanueva V, Díez-Herrero A, Stoffel M, Bollschweiler M, Bodoque JM, Ballesteros JA (2010) Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology 118(3–4):383–392

    Article  Google Scholar 

  • Sachs T (1991) Pattern formation in plant tissue. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schweingruber F, Eckstein D, Serre-Bachet F, Bräker OU (1990) Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8:9–39

    Google Scholar 

  • Shroder JF (1978) Dendro-geomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quat Res 9(2):168–185

    Article  Google Scholar 

  • Shroder JF (1980) Dendrogeomorphology; review and new dating techniques of tree-ring dating. Prog Phys Geogr 4:161–188

    Article  Google Scholar 

  • Sigafoos RH (1964) Botanical evidence of floods and floodplain deposition, U.S. Geological Survey professional paper 485-A. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Stoffel M (2010) Magnitude-frequency relationships of debris flows – a case study based on field survey and tree-ring records. Geomorphology 116:67–76

    Article  Google Scholar 

  • Stoffel M, Beniston M (2006) On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: a case study from the Swiss Alps. Geophys Res Lett 33(16):L16404

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2008) Tree-ring analysis in natural hazards research – an overview. Nat Hazard Earth Syst Sci 8(2):187–202

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M (2009) What tree rings can tell about earth-surface processes: teaching the principles of dendrogeomorphology. Geogr Compass 3(3):1013–1037

    Article  Google Scholar 

  • Stoffel M, Conus D, Grichting MA, Lièvre I, Maitre G (2008) Unraveling the patterns of late Holocene debris-flow activity on a cone in the Swiss Alps: chronology, environment and implications for the future. Glob Planet Chang 60(3–4):222–234

    Article  Google Scholar 

  • Stoffel M, Bollschweiler M, Butler DR, Luckman BH (2010a) Tree rings and natural hazards – a state-of-the-art. Springer, Dordrecht

    Book  Google Scholar 

  • Stoffel M, Bollschweiler M, Widmer S, Sorg A (2010b) Spatio-temporal variability in debris-flow activity: a tree-ring study at Geisstriftbach (Swiss Alps) extending back to AD 1736. Swiss J Geosci 103(2):283–292

    Article  Google Scholar 

  • Strunk H (1988) Episodische Murschübe in den Pragser Dolomiten – semiquantitative Erfassung von Frequenz und Transportmenge. Z Geomorphol 83:71–81

    Google Scholar 

  • Strunk H (1989) Dendrogeomorphology of debris flows. Dendrochronologia 7:15–25

    Google Scholar 

  • Strunk H (1991) Frequency distribution of debris flow in the Alps since the “Little Ice Age”. Z Geomorphol 83:71–81

    Google Scholar 

  • Strunk H (1995) Dendrogeomorphologische Methoden zur Ermittlung der Murfrequenz und Beispiele ihrer Anwendung. Roderer, Regensburg

    Google Scholar 

  • Szymczak S, Bollschweiler M, Stoffel M, Dikau R (2010) Debris-flow activity and snow avalanches in a steep watershed of the Valais Alps (Switzerland): dendrogeomorphic event reconstruction and identification of triggers. Geomorphology 116:107–114

    Article  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of conifer tree rings. Images of past and future environments. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Wilkerson FD, Schmid GL (2003) Debris flows in Glacier National Park, Montana: geomorphology and hazards. Geomorphology 55(1–4):317–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Schneuwly-Bollschweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schneuwly-Bollschweiler, M., Stoffel, M. (2013). Dendrogeomorphology – Tracking Past Events with Tree Rings. In: Schneuwly-Bollschweiler, M., Stoffel, M., Rudolf-Miklau, F. (eds) Dating Torrential Processes on Fans and Cones. Advances in Global Change Research, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4336-6_10

Download citation

Publish with us

Policies and ethics