The Coxiella burnetii Parasitophorous Vacuole

  • Eric Ghigo
  • María I. Colombo
  • Robert A. Heinzen
Part of the Advances in Experimental Medicine and Biology book series (volume 984)


Coxiella burnetii is a bacterial intracellular parasite of eucaryotic cells that replicates within a membrane-bound compartment, or “parasitophorous vacuole” (PV). With the exception of human macrophages/monocytes, the consensus model of PV trafficking in host cells invokes endolysosomal maturation culminating in lysosome fusion. C. burnetii resists the degradative functions of the vacuole while at the same time exploiting the acidic pH for metabolic activation. While at first glance the mature PV resembles a large phagolysosome, an increasing body of evidence indicates the vacuole is in fact a specialized compartment that is actively modified by the pathogen. Adding to the complexity of PV biogenesis is new data showing vacuole engagement with autophagic and early secretory pathways. In this chapter, we review current knowledge of PV nature and development, and discuss disparate data related to the ultimate maturation state of PV harboring virulent or avirulent C. burnetii lipopolysaccharide phase variants in human mononuclear phagocytes.


Macrophage Parasitophorous vacuole Endosome Lysosome Autophagy Integrin Lipopolysaccharide Monocyte Phase variation Secretory pathway 



We thank Dale Howe and Stacy Gilk for critical reading of the manuscript. This research was supported by the CNRS (E. G.), the Agencia Nacional de Promoción Científica y Tecnológica and SECTyP (Universidad Nacional de Cuyo) (M. I. C.) and the Intramural Research Program of the National Institutes of Health, National Institute of Allergy and Infectious Diseases (R. A. H.)


  1. Agramonte-Hevia J, Gonzalez-Arenas A, Barrera D, Velasco-Velazquez M (2002) Gram-negative bacteria and phagocytic cell interaction mediated by complement receptor 3. FEMS Immunol Med Microbiol 34:255–266PubMedGoogle Scholar
  2. Aguilera M, Salinas R, Rosales E, Carminati S, Colombo MI, Beron W (2009) Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect Immun 77:4609–4620PubMedGoogle Scholar
  3. Akporiaye ET, Rowatt JD, Aragon AA, Baca OG (1983) Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii. Infect Immun 40:1155–1162PubMedGoogle Scholar
  4. Akporiaye ET, Stefanovich D, Tsosie V, Baca G (1990) Coxiella burnetii fails to stimulate human neutrophil superoxide anion production. Acta Virol 34:64–70PubMedGoogle Scholar
  5. Alonso A, Garcia-Del Portillo F (2004) Hijacking of eukaryotic functions by intracellular bacterial pathogens. Int Microbiol 7:181–191PubMedGoogle Scholar
  6. Amano K, Williams JC (1984) Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J Bacteriol 160:994–1002PubMedGoogle Scholar
  7. Amano K, Williams JC, Mccaul TF, Peacock MG (1984) Biochemical and immunological properties of Coxiella burnetii cell wall and peptidoglycan-protein complex fractions. J Bacteriol 160:982–988PubMedGoogle Scholar
  8. Aragon AS, Pereira HA, Baca OG (1995) A cationic antimicrobial peptide enhances the infectivity of Coxiella burnetii. Acta Virol 39:223–226PubMedGoogle Scholar
  9. Ariel BM, Khavkin TN, Amosenkova NI (1973) Interaction between Coxiellae burnetii and the cells in experimental Q-rickettsiosis. Histologic and electron microscope studies. Pathol Microbiol 39:412–423Google Scholar
  10. Baca OG, Akporiaye ET, Aragon AS, Martinez IL, Robles MV, Warner NL (1981) Fate of phase I and phase II Coxiella burnetii in several macrophage-like tumor cell lines. Infect Immun 33:258–266PubMedGoogle Scholar
  11. Baca O, Akporiaye ET, Rowatt JD (1984) Possible biochemical adaptations of Coxiella burnetii for survival within phagocytes: effects of antibody. In: Leive L, Schlessinger D (eds) Microbiology 1984. ASM Press, Washington, DCGoogle Scholar
  12. Baca OG, Scott TO, Akporiaye ET, Deblassie R, Crissman HA (1985) Cell cycle distribution patterns and generation times of L929 fibroblast cells persistently infected with Coxiella burnetii. Infect Immun 47:366–369PubMedGoogle Scholar
  13. Baca OG, Klassen DA, Aragon AS (1993a) Entry of Coxiella burnetii into host cells. Acta Virol 37:143–155PubMedGoogle Scholar
  14. Baca OG, Roman MJ, Glew RH, Christner RF, Buhler JE, Aragon AS (1993b) Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infect Immun 61:4232–4239PubMedGoogle Scholar
  15. Baca OG, Li YP, Kumar H (1994) Survival of the Q fever agent Coxiella burnetii in the phagolysosome. Trends Microbiol 2:476–480PubMedGoogle Scholar
  16. Barry AO, Mege JL, Ghigo E (2011) Hijacked phagosomes and leukocyte activation: an intimate relationship. J Leukoc Biol 89:373–382PubMedGoogle Scholar
  17. Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF, Heinzen RA (2006) Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol 188:2309–2324PubMedGoogle Scholar
  18. Beare PA, Howe D, Cockrell DC, Omsland A, Hansen B, Heinzen RA (2009a) Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191:1369–1381PubMedGoogle Scholar
  19. Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ 3rd, Porcella SF, Samuel JE, Heinzen RA (2009b) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656PubMedGoogle Scholar
  20. Beare PA, Sandoz KM, Omsland A, Rockey DD, Heinzen RA (2011) Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front Microbiol. 2:97Google Scholar
  21. Bekker LG, Freeman S, Murray PJ, Ryffel B, Kaplan G (2001) TNF-alpha controls intracellular mycobacterial growth by both inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways. J Immunol 166:6728–6734PubMedGoogle Scholar
  22. Ben Amara A, Ghigo E, Le Priol Y, Lepolard C, Salcedo SP, Lemichez E, Bretelle F, Capo C, Mege JL (2010) Coxiella burnetii, the agent of Q fever, replicates within trophoblasts and induces a unique transcriptional response. PLoS One 5:e15315PubMedGoogle Scholar
  23. Beron W, Gutierrez MG, Rabinovitch M, Colombo MI (2002) Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 70:5816–5821PubMedGoogle Scholar
  24. Blander JM, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304:1014–1018PubMedGoogle Scholar
  25. Blauer F, Groscurth P, Schneemann M, Schoedon G, Schaffner A (1995) Modulation of the antilisterial activity of human blood-derived macrophages by activating and deactivating cytokines. J Interferon Cytokine Res 15:105–114PubMedGoogle Scholar
  26. Brennan RE, Russell K, Zhang G, Samuel JE (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72:6666–6675PubMedGoogle Scholar
  27. Briggs HL, Pul N, Seshadri R, Wilson MJ, Tersteeg C, Russell-Lodrigue KE, Andoh M, Baumler AJ, Samuel JE (2008) Limited role for iron regulation in Coxiella burnetii pathogenesis. Infect Immun 76:2189–2201PubMedGoogle Scholar
  28. Bucci C, Thomsen P, Nicoziani P, Mccarthy J, Van Deurs B (2000) Rab7: a key to lysosome biogenesis. Mol Biol Cell 11:467–480PubMedGoogle Scholar
  29. Burnet FM, Freeman M (1937) Experimental studies on the virus of “Q” fever. Med J Aust 2:299–305Google Scholar
  30. Burton PR, Kordova N, Paretsky D (1971) Electron microscopic studies of the rickettsia Coxiella burnetii: entry, lysosomal response, and fate of rickettsial DNA in L-cells. Can J Microbiol 17:143–150PubMedGoogle Scholar
  31. Burton PR, Stueckemann J, Paretsky D (1975) Electron microscopy studies of the limiting layers of the rickettsia Coxiella burneti. J Bacteriol 122:316–324PubMedGoogle Scholar
  32. Burton PR, Stueckemann J, Welsh RM, Paretsky D (1978) Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infect Immun 21:556–566PubMedGoogle Scholar
  33. Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, Maclean I, Mohammed Z, Peeling R, Roshick C, Schachter J, Solomon AW, Stamm WE, Suchland RJ, Taylor L, West SK, Quinn TC, Belland RJ, Mcclarty G (2003) Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest 111:1757–1769PubMedGoogle Scholar
  34. Campoy EM, Zoppino FC, Colombo MI (2011) The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect Immun 79:402–413PubMedGoogle Scholar
  35. Capo C, Zaffran Y, Zugun F, Houpikian P, Raoult D, Mege JL (1996a) Production of interleukin-10 and transforming growth factor beta by peripheral blood mononuclear cells in Q fever endocarditis. Infect Immun 64:4143–4147PubMedGoogle Scholar
  36. Capo C, Zugun F, Stein A, Tardei G, Lepidi H, Raoult D, Mege JL (1996b) Upregulation of tumor necrosis factor alpha and interleukin-1 beta in Q fever endocarditis. Infect Immun 64:1638–1642PubMedGoogle Scholar
  37. Capo C, Lindberg FP, Meconi S, Zaffran Y, Tardei G, Brown EJ, Raoult D, Mege JL (1999) Subversion of monocyte functions by Coxiella burnetii: impairment of the cross-talk between αvβ3 integrin and CR3. J Immunol 163:6078–6085PubMedGoogle Scholar
  38. Capo C, Moynault A, Collette Y, Olive D, Brown EJ, Raoult D, Mege JL (2003) Coxiella burnetii avoids macrophage phagocytosis by interfering with spatial distribution of complement receptor 3. J Immunol 170:4217–4225PubMedGoogle Scholar
  39. Chen C, Banga S, Mertens K, Weber MM, Gorbaslieva I, Tan Y, Luo ZQ, Samuel JE (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A 107:21755–21760PubMedGoogle Scholar
  40. Coleman SA, Fischer ER, Howe D, Mead DJ, Heinzen RA (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186:7344–7352PubMedGoogle Scholar
  41. Cooke RA (2008) Q fever. Was Edward Derrick’s contribution undervalued? Med J Aust 189:660–662PubMedGoogle Scholar
  42. Cossart P, Roy CR (2010) Manipulation of host membrane machinery by bacterial pathogens. Curr Opin Cell Biol 22:547–554PubMedGoogle Scholar
  43. Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 304:242–248PubMedGoogle Scholar
  44. Cox HR (1938) A filter-passing infectious agent isolated from ticks. III. Description of organism and cultivation experiments. Public Health Rep 53:2270–2276Google Scholar
  45. Cox HR (1939) Sudies of a filter-passing infectious agent isolated from ticks. V. Further attempts to cultivate in cell-free media. Suggested classification. Public Health Rep 54:1822–1827Google Scholar
  46. Dellacasagrande J, Capo C, Raoult D, Mege JL (1999) IFN-gamma-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162:2259–2265PubMedGoogle Scholar
  47. Denison AM, Massung RF, Thompson HA (2007) Analysis of the O-antigen biosynthesis regions of phase II isolates of Coxiella burnetii. FEMS Microbiol Lett 267:102–107PubMedGoogle Scholar
  48. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549PubMedGoogle Scholar
  49. Derrick EH (1937) “Q” fever, a new fever entity: clinical features, diagnosis, and laboratory investigation. Med J Aust 2:281–299Google Scholar
  50. Desjardins M, Celis JE, Van Meer G, Dieplinger H, Jahraus A, Griffiths G, Huber LA (1994) Molecular characterization of phagosomes. J Biol Chem 269:32194–321200PubMedGoogle Scholar
  51. Ghigo E, Capo C, Tung CH, Raoult D, Gorvel JP, Mege JL (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-gamma mediates its restoration and bacterial killing. J Immunol 169:4488–4495PubMedGoogle Scholar
  52. Ghigo E, Honstettre A, Capo C, Gorvel JP, Raoult D, Mege JL (2004) Link between impaired maturation of phagosomes and defective Coxiella burnetii killing in patients with chronic Q fever. J Infect Dis 190:1767–1772PubMedGoogle Scholar
  53. Ghigo E, Capo C, Raoult D, Mege JL (2006) Intracellular life of Coxiella burnetii in macrophages: insight Into Q fever. Curr Immunol Rev 2:225–232Google Scholar
  54. Grieshaber S, Swanson JA, Hackstadt T (2002) Determination of the physical environment within the Chlamydia trachomatis inclusion using ion-selective ratiometric probes. Cell Microbiol 4:273–283PubMedGoogle Scholar
  55. Grieshaber SS, Grieshaber NA, Miller N, Hackstadt T (2006) Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic 7:940–949PubMedGoogle Scholar
  56. Gutierrez MG, Vazquez CL, Munafo DB, Zoppino FC, Beron W, Rabinovitch M, Colombo MI (2005) Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 7:981–993PubMedGoogle Scholar
  57. Haas A (2007) The phagosome: compartment with a license to kill. Traffic 8:311–330PubMedGoogle Scholar
  58. Hackstadt T (1988) Steric hindrance of antibody binding to surface proteins of Coxiella burnetti by phase I lipopolysaccharide. Infect Immun 56:802–807PubMedGoogle Scholar
  59. Hackstadt T, Williams JC (1981) Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A 78:3240–3244PubMedGoogle Scholar
  60. Hackstadt T, Williams JC (1984) Metabolic adaptations of Coxiella burnetii to intraphagolysosomal growth. In: Lieve L, Schlessinger D (eds) Microbiology 1984. ASM Press, Washington, DCGoogle Scholar
  61. Hackstadt T, Peacock MG, Hitchcock PJ, Cole RL (1985) Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect Immun 48:359–365PubMedGoogle Scholar
  62. Handley J, Paretsky D, Stueckemann J (1967) Electron microscopic observations of Coxiella burnetii in the guinea pig. J Bacteriol 94:263–267PubMedGoogle Scholar
  63. Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64:796–809PubMedGoogle Scholar
  64. Henry RM, Hoppe AD, Joshi N, Swanson JA (2004) The uniformity of phagosome maturation in macrophages. J Cell Biol 164:185–194PubMedGoogle Scholar
  65. Hill J, Samuel JE (2011) Coxiella burnetii acid phosphatase inhibits the release of reactive oxygen intermediates in polymorphonuclear leukocytes. Infect Immun 79:414–420PubMedGoogle Scholar
  66. Hinrichs DJ, Jerrells TR (1976) In vitro evaluation of immunity to Coxiella burnetii. J Immunol 117:996–1003PubMedGoogle Scholar
  67. Hirsch CS, Ellner JJ, Russell DG, Rich EA (1994) Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol 152:743–753PubMedGoogle Scholar
  68. Holden DW (2002) Trafficking of the Salmonella vacuole in macrophages. Traffic 3:161–169PubMedGoogle Scholar
  69. Honstettre A, Imbert G, Ghigo E, Gouriet F, Capo C, Raoult D, Mege JL (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187:956–962PubMedGoogle Scholar
  70. Honstettre A, Ghigo E, Moynault A, Capo C, Toman R, Akira S, Takeuchi O, Lepidi H, Raoult D, Mege JL (2004) Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. J Immunol 172:3695–3703PubMedGoogle Scholar
  71. Hoover TA, Culp DW, Vodkin MH, Williams JC, Thompson HA (2002) Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii Nine Mile strain. Infect Immun 70:6726–6733PubMedGoogle Scholar
  72. Houde M, Bertholet S, Gagnon E, Brunet S, Goyette G, Laplante A, Princiotta MF, Thibault P, Sacks D, Desjardins M (2003) Phagosomes are competent organelles for antigen cross-presentation. Nature 425:402–406PubMedGoogle Scholar
  73. Howe D, Mallavia LP (2000) Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect Immun 68:3815–3821PubMedGoogle Scholar
  74. Howe D, Barrows LF, Lindstrom NM, Heinzen RA (2002) Nitric oxide inhibits Coxiella burnetii replication and parasitophorous vacuole maturation. Infect Immun 70:5140–5147PubMedGoogle Scholar
  75. Howe D, Melnicakova J, Barak I, Heinzen RA (2003) Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell Microbiol 5:469–480PubMedGoogle Scholar
  76. Howe D, Shannon JG, Winfree S, Dorward DW, Heinzen RA (2010) Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect Immun 78:3465–3474PubMedGoogle Scholar
  77. Hu H, Sosnovsky G, Swartz HM (1992) Simultaneous measurements of the intra- and extra-cellular oxygen concentration in viable cells. Biochim Biophys Acta 1112:161–166PubMedGoogle Scholar
  78. Hu C, Mayadas-Norton T, Tanaka K, Chan J, Salgame P (2000) Mycobacterium tuberculosis infection in complement receptor 3-deficient mice. J Immunol 165:2596–2602PubMedGoogle Scholar
  79. Hussain SK, Broederdorf LJ, Shama UM, Voth DE (2010) Host kinase activity is required for Coxiella burnetii parasitophorous vacuole formation. Front Microbiol 1:137PubMedGoogle Scholar
  80. Izzo AA, Marmion BP (1993) Variation in interferon-gamma responses to Coxiella burnetii antigens with lymphocytes from vaccinated or naturally infected subjects. Clin Exp Immunol 94:507–515PubMedGoogle Scholar
  81. Khavkin T, Tabibzadeh SS (1988) Histologic, immunofluorescence, and electron microscopic study of infectious process in mouse lung after intranasal challenge with Coxiella burnetii. Infect Immun 56:1792–1799PubMedGoogle Scholar
  82. Koster FT, Williams JC, Goodwin JS (1985) Cellular immunity in Q fever: specific lymphocyte unresponsiveness in Q fever endocarditis. J Infect Dis 152:1283–1289PubMedGoogle Scholar
  83. Kumar Y, Valdivia RH (2008) Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4:159–169PubMedGoogle Scholar
  84. Lem L, Riethof DA, Scidmore-Carlson M, Griffiths GM, Hackstadt T, Brodsky FM (1999) Enhanced interaction of HLA-DM with HLA-DR in enlarged vacuoles of hereditary and infectious lysosomal diseases. J Immunol 162:523–532PubMedGoogle Scholar
  85. Li YP, Curley G, Lopez M, Chavez M, Glew R, Aragon A, Kumar H, Baca OG (1996) Protein-tyrosine phosphatase activity of Coxiella burnetii that inhibits human neutrophils. Acta Virol 40:263–272PubMedGoogle Scholar
  86. Lubick K, Radke M, Jutila M (2007) Securinine, a GABAA receptor antagonist, enhances macrophage clearance of phase II C. burnetii: comparison with TLR agonists. J Leukoc Biol 82:1062–1069PubMedGoogle Scholar
  87. Luhrmann A, Nogueira CV, Carey KL, Roy CR (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107:18997–19001PubMedGoogle Scholar
  88. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632PubMedGoogle Scholar
  89. Luzio JP, Parkinson MD, Gray SR, Bright NA (2009) The delivery of endocytosed cargo to lysosomes. Biochem Soc Trans 37:1019–1021PubMedGoogle Scholar
  90. Mahapatra S, Ayoubi P, Shaw EI (2010) Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection. BMC Microbiol 10:244PubMedGoogle Scholar
  91. Maurin M, Benoliel AM, Bongrand P, Raoult D (1992a) Phagolysosomal alkalinization and the bactericidal effect of antibiotics: the Coxiella burnetii paradigm. J Infect Dis 166:1097–1102PubMedGoogle Scholar
  92. Maurin M, Benoliel AM, Bongrand P, Raoult D (1992b) Phagolysosomes of Coxiella burnetii-infected cell lines maintain an acidic pH during persistent infection. Infect Immun 60:5013–5016PubMedGoogle Scholar
  93. Meconi S, Jacomo V, Boquet P, Raoult D, Mege JL, Capo C (1998) Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect Immun 66:5527–5533PubMedGoogle Scholar
  94. Meconi S, Capo C, Remacle-Bonnet M, Pommier G, Raoult D, Mege JL (2001) Activation of protein tyrosine kinases by Coxiella burnetii: role in actin cytoskeleton reorganization and bacterial phagocytosis. Infect Immun 69:2520–2526PubMedGoogle Scholar
  95. Meghari S, Honstettre A, Lepidi H, Ryffel B, Raoult D, Mege JL (2005) TLR2 is necessary to inflammatory response in Coxiella burnetii infection. Ann N Y Acad Sci 1063:161–166PubMedGoogle Scholar
  96. Meresse S, Steele-Mortimer O, Finlay BB, Gorvel JP (1999a) The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J 18:4394–4403PubMedGoogle Scholar
  97. Meresse S, Steele-Mortimer O, Moreno E, Desjardins M, Finlay B, Gorvel JP (1999b) Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat Cell Biol 1:183–188Google Scholar
  98. Moos A, Hackstadt T (1987) Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun 55:1144–1150PubMedGoogle Scholar
  99. Newton HJ, Ang DK, Van Driel IR, Hartland EL (2010) Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23:274–298PubMedGoogle Scholar
  100. Ochoa-Reparaz J, Sentissi J, Trunkle T, Riccardi C, Pascual DW (2007) Attenuated Coxiella burnetii phase II causes a febrile response in gamma interferon knockout and Toll-like receptor 2 knockout mice and protects against reinfection. Infect Immun 75:5845–5858PubMedGoogle Scholar
  101. Oh YK, Swanson JA (1996) Different fates of phagocytosed particles after delivery into macrophage lysosomes. J Cell Biol 132:585–593PubMedGoogle Scholar
  102. Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A 106:4430–4434PubMedGoogle Scholar
  103. Omsland A, Gilk SD, Shannon JG, Beare PA, Voth DE, Howe D, Cockrell DC, Heinzen RA (2010) Exploring the cause of human Q fever: recent advances in Coxiella burnetii research. In: Georgiev V (ed) National Institute of Allergy and Infectious Diseases: Intramural Research, vol 3. Springer, New YorkGoogle Scholar
  104. Ormsbee RA (1952) The growth of Coxiella burnetii in embryonated eggs. J Bacteriol 63:73–86PubMedGoogle Scholar
  105. Pan X, Luhrmann A, Satoh A, Laskowski-Arce MA, Roy CR (2008) Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654PubMedGoogle Scholar
  106. Park DR, Skerrett SJ (1996) IL-10 enhances the growth of Legionella pneumophila in human mononuclear phagocytes and reverses the protective effect of IFN-gamma: differential responses of blood monocytes and alveolar macrophages. J Immunol 157:2528–2538PubMedGoogle Scholar
  107. Patil S, Jedsadayanmata A, Wencel-Drake JD, Wang W, Knezevic I, Lam SC (1999) Identification of a talin-binding site in the integrin beta(3) subunit distinct from the NPLY regulatory motif of post-ligand binding functions. The talin n-terminal head domain interacts with the membrane-proximal region of the beta(3) cytoplasmic tail. J Biol Chem 274:28575–28583PubMedGoogle Scholar
  108. Ren Q, Robertson SJ, Howe D, Barrows LF, Heinzen RA (2003) Comparative DNA microarray analysis of host cell transcriptional responses to infection by Coxiella burnetii or Chlamydia trachomatis. Ann N Y Acad Sci 990:701–713PubMedGoogle Scholar
  109. Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749PubMedGoogle Scholar
  110. Rohde K, Yates RM, Purdy GE, Russell DG (2007) Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219:37–54PubMedGoogle Scholar
  111. Roman MJ, Coriz PD, Baca OG (1986) A proposed model to explain persistent infection of host cells with Coxiella burnetii. J Gen Microbiol 132:1415–1422PubMedGoogle Scholar
  112. Romano PS, Gutierrez MG, Beron W, Rabinovitch M, Colombo MI (2007) The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol 9:891–909PubMedGoogle Scholar
  113. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715PubMedGoogle Scholar
  114. Santic M, Molmeret M, Abu Kwaik Y (2005) Maturation of the Legionella pneumophila-containing phagosome into a phagolysosome within gamma interferon-activated macrophages. Infect Immun 73:3166–3171PubMedGoogle Scholar
  115. Sauer JD, Shannon JG, Howe D, Hayes SF, Swanson MS, Heinzen RA (2005) Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun 73:4494–4504PubMedGoogle Scholar
  116. Schaible UE, Schlesinger PH, Steinberg TH, Mangel WF, Kobayashi T, Russell DG (1999) Parasitophorous vacuoles of Leishmania mexicana acquire macromolecules from the host cell cytosol via two independent routes. J Cell Sci 112:681–693PubMedGoogle Scholar
  117. Scott CC, Botelho RJ, Grinstein S (2003) Phagosome maturation: a few bugs in the system. J Membr Biol 193:137–152PubMedGoogle Scholar
  118. Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin H, Davidsen TM, Beanan MJ, Deboy RT, Daugherty SC, Brinkac LM, Madupu R, Dodson RJ, Khouri HM, Lee KH, Carty HA, Scanlan D, Heinzen RA, Thompson HA, Samuel JE, Fraser CM, Heidelberg JF (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100:5455–5460PubMedGoogle Scholar
  119. Shannon JG, Howe D, Heinzen RA (2005) Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A 102:8722–8727PubMedGoogle Scholar
  120. Shannon JG, Cockrell DC, Takahashi K, Stahl GL, Heinzen RA (2009) Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunol 10:26PubMedGoogle Scholar
  121. Sidhu GS, Singh AK, Sundarrajan RN, Sundar SV, Maheshwari RK (1999) Role of vacuolar H(+)-ATPase in interferon-induced inhibition of viral glycoprotein transport. J Interferon Cytokine Res 19:1297–1303PubMedGoogle Scholar
  122. Siemsen DW, Kirpotina LN, Jutila MA, Quinn MT (2009) Inhibition of the human neutrophil NADPH oxidase by Coxiella burnetii. Microbes Infect 11:671–679PubMedGoogle Scholar
  123. Stein A, Louveau C, Lepidi H, Ricci F, Baylac P, Davoust B, Raoult D (2005) Q fever pneumonia: virulence of Coxiella burnetii pathovars in a murine model of aerosol infection. Infect Immun 73:2469–2477PubMedGoogle Scholar
  124. Stuart LM, Ezekowitz RA (2005) Phagocytosis: elegant complexity. Immunity 22:539–550PubMedGoogle Scholar
  125. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944PubMedGoogle Scholar
  126. Tsang AW, Oestergaard K, Myers JT, Swanson JA (2000) Altered membrane trafficking in activated bone marrow-derived macrophages. J Leukoc Biol 68:487–494PubMedGoogle Scholar
  127. Tujulin E, Macellaro A, Lilliehook B, Norlander L (1998) Effect of endocytosis inhibitors on Coxiella burnetii interaction with host cells. Acta Virol 42:125–131PubMedGoogle Scholar
  128. Underhill DM (2004) Toll-like receptors and microbes take aim at each other. Curr Opin Immunol 16:483–487PubMedGoogle Scholar
  129. Vazquez CL, Colombo MI (2010) Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection. Cell Death Differ 17:421–438PubMedGoogle Scholar
  130. Via LE, Fratti RA, Mcfalone M, Pagan-Ramos E, Deretic D, Deretic V (1998) Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111:897–905PubMedGoogle Scholar
  131. Vishwanath S, Hackstadt T (1988) Lipopolysaccharide phase variation determines the complement-mediated serum susceptibility of Coxiella burnetii. Infect Immun 56:40–44PubMedGoogle Scholar
  132. Voth DE, Heinzen RA (2007) Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9:829–840PubMedGoogle Scholar
  133. Voth DE, Heinzen RA (2009a) Coxiella type IV secretion and cellular microbiology. Curr Opin Microbiol 12:74–80PubMedGoogle Scholar
  134. Voth DE, Heinzen RA (2009b) Sustained activation of Akt and Erk1/2 is required for Coxiella burnetii antiapoptotic activity. Infect Immun 77:205–213PubMedGoogle Scholar
  135. Voth DE, Howe D, Heinzen RA (2007) Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 75:4263–4271PubMedGoogle Scholar
  136. Voth DE, Howe D, Beare PA, Vogel JP, Unsworth N, Samuel JE, Heinzen RA (2009) The Coxiella burnetii ankyrin repeat domain-containing protein family is heterogeneous, with C-terminal truncations that influence Dot/Icm-mediated secretion. J Bacteriol 191:4232–4242PubMedGoogle Scholar
  137. Voth DE, Beare PA, Howe D, Sharma UM, Samoilis G, Cockrell DC, Omsland A, Heinzen RA (2011) The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 193:1493–1503PubMedGoogle Scholar
  138. Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71:1341–1352PubMedGoogle Scholar
  139. Weisburg WG, Dobson ME, Samuel JE, Dasch GA, Mallavia LP, Baca O, Mandelco L, Sechrest JE, Weiss E, Woese CR (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171:4202–4206PubMedGoogle Scholar
  140. Weiss E (1973) Growth and physiology of rickettsiae. Bacteriol Rev 37:259–283PubMedGoogle Scholar
  141. Weiss E, Moulder JW (1984) Order I. Rickettsiales Gieszczkiewicz 1939, 25AL. The Williams & Wilkens Co., BaltimoreGoogle Scholar
  142. Wesolowski J, Paumet F (2010) SNARE motif: a common motif used by pathogens to manipulate membrane fusion. Virulence 1:319–324PubMedGoogle Scholar
  143. West MA, Wallin RP, Matthews SP, Svensson HG, Zaru R, Ljunggren HG, Prescott AR, Watts C (2004) Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305:1153–1157PubMedGoogle Scholar
  144. Williams JC, Peacock MG, Mccaul TF (1981) Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun 32:840–851PubMedGoogle Scholar
  145. Yates RM, Russell DG (2005) Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4. Immunity 23:409–417PubMedGoogle Scholar
  146. Zaidi N, Maurer A, Nieke S, Kalbacher H (2008) Cathepsin D: a cellular roadmap. Biochem Biophys Res Commun 376:5–9PubMedGoogle Scholar
  147. Zamboni DS (2004) Genetic control of natural resistance of mouse macrophages to Coxiella burnetii Infection in vitro: macrophages from restrictive strains control parasitophorous vacuole maturation. Infect Immun 72:2395–2399PubMedGoogle Scholar
  148. Zamboni DS, Rabinovitch M (2003) Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect Immun 71:1225–1233PubMedGoogle Scholar
  149. Zamboni DS, Rabinovitch M (2004) Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii Phase II through down-modulation of nitric oxide production. Infect Immun 72:2075–2080PubMedGoogle Scholar
  150. Zamboni DS, Mortara RA, Freymuller E, Rabinovitch M (2002) Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II. Microbes Infect 4:591–598PubMedGoogle Scholar
  151. Zamboni DS, Campos MA, Torrecilhas AC, Kiss K, Samuel JE, Golenbock DT, Lauw FN, Roy CR, Almeida IC, Gazzinelli RT (2004) Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem 279:54405–54415PubMedGoogle Scholar
  152. Zerial M, Mcbride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117PubMedGoogle Scholar
  153. Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI (2010) Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 11:1246–1261PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Eric Ghigo
    • 1
  • María I. Colombo
    • 2
  • Robert A. Heinzen
    • 3
  1. 1.URMITE CNRS UMR 6236 – IRD 3R198, Institut Fédératif de Recherche 48Université de la MéditerranéeMarseilleFrance
  2. 2.Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias MédicasUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain LaboratoriesNational Institute of Allergy and Infectious Diseases, National Institutes of HealthHamiltonUSA

Personalised recommendations