In the past two decades, many Coxiella-like bacteria have been found in hard ticks and soft ticks as well as in vertebrate hosts. It is interesting to note that many ticks harbor Coxiella-like bacteria with high prevalence. Coxiella-like bacteria and virulent Coxiella burnetii have high homology to each other; they form a monophyletic clade based on 16S rRNA sequence data and subsequent phylogenetic tree analyses. In this chapter, methods of detection, phylogeny, prevalence and density, distribution in tick organs, transmission routes, bacteria-host interactions, and putative functions of the Coxiella-like bacteria are reviewed.


Bacteria-host interactions Coxiella-like bacteria Phylogeny Ticks Vertebrate host Endosymbiont Transovarial transmission Rickettsia Transstadial transmission Homologous 


  1. Aitken ID (1989) Clinical aspects and prevention of Q fever in animals. Eur J Epidemiol 5:420–424PubMedCrossRefGoogle Scholar
  2. Akman L, Yamashita A, Watanabe H et al (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407PubMedCrossRefGoogle Scholar
  3. Angelakis E, Raoult D (2010) Q fever. Vet Microbiol 140:297–309PubMedCrossRefGoogle Scholar
  4. Baldridge GD, Burkhardt NY, Simser JA et al (2004) Sequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni. Appl Environ Microbiol 70:6628–6636PubMedCrossRefGoogle Scholar
  5. Baumann P, Baumann L, Lai CY et al (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94PubMedCrossRefGoogle Scholar
  6. Beard CB, Dotson EM, Pennington PM et al (2001) Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol 31:621–627PubMedCrossRefGoogle Scholar
  7. Bernasconi MV, Casati S, Peter O et al (2002) Rhipicephalus ticks infected with Rickettsia and Coxiella in Southern Switzerland (Canton Ticino). Infect Genet Evol 2:111–120PubMedCrossRefGoogle Scholar
  8. Burgdorfer W, Brinton LP (1975) Mechanisms of transovarial infection of spotted fever Rickettsiae in ticks. Ann N Y Acad Sci 266:61–72PubMedCrossRefGoogle Scholar
  9. Burgdorfer W, Brinton LP, Hughes LE (1973) Isolation and characterization of symbiotes from the Rocky Mountain wood tick, Dermacentor andersoni. J Invertebr Pathol 22:424–434PubMedCrossRefGoogle Scholar
  10. Burgdorfer W, Hayes SF, Mavros AJ (1981) Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii. In: Burgdorfer W, Anacker RL (eds) Rickettsiae and rickettsial diseases. Academic, New YorkGoogle Scholar
  11. Childs JE, Paddock CD (2003) The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. Annu Rev Entomol 48:307–337PubMedCrossRefGoogle Scholar
  12. Clay K, Klyachko O, Grindle N et al (2008) Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol Ecol 17:4371–4381PubMedCrossRefGoogle Scholar
  13. Daiter AB (1977) Transovarial and transspermal transmission of Coxiella burneti by the tick Hyalomma asiaticum and its role in the ecology of Q-rickettsiosis. Parazitologiia 11:403–411PubMedGoogle Scholar
  14. De LP, Lennette EH, Deome KB (1950) Q fever in California; recovery of Coxiella burnetii from naturally-infected air-borne dust. J Immunol 65:211–220Google Scholar
  15. Dergousoff SJ, Gajadhar AJ, Chilton NB (2009) Prevalence of Rickettsia species in Canadian populations of Dermacentor andersoni and D. variabilis. Appl Environ Microbiol 75:1786–1789PubMedCrossRefGoogle Scholar
  16. Derrick EH (1937) Q fever, a new fever entity: clinical features, diagnosis and laboratory investigation. Med J Aust 2:281Google Scholar
  17. Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342PubMedCrossRefGoogle Scholar
  18. Drago L, Lombardi A, De Vecchi E et al (2004) Comparison of nested PCR and real time PCR of Herpesvirus infections of central nervous system in HIV patients. BMC Infect Dis 4:55PubMedCrossRefGoogle Scholar
  19. Farcas GA, Zhong KJ, Mazzulli T et al (2004) Evaluation of the RealArt Malaria LC real-time PCR assay for malaria diagnosis. J Clin Microbiol 42:636–638PubMedCrossRefGoogle Scholar
  20. Faria e Silva PM, Fiorini JE, Soares MJ et al (1994) Membrane-associated polysaccharides composition, nutritional requirements and cell differentiation in Herpetomonas roitmani: influence of the endosymbiont. J Eukaryot Microbiol 41:55–59PubMedCrossRefGoogle Scholar
  21. Fox GE, Magrum LJ, Balch WE et al (1977) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A 74:4537–4541PubMedCrossRefGoogle Scholar
  22. Freitas LH, Faccini JL, Labruna MB (2009) Experimental infection of the rabbit tick, Haemaphysalis leporispalustris, with the bacterium Rickettsia rickettsii, and comparative biology of infected and uninfected tick lineages. Exp Appl Acarol 47:321–345PubMedCrossRefGoogle Scholar
  23. Genc A, Eroglu F, Koltas IS (2010) Detection of Plasmodium vivax by nested PCR and real-time PCR. Korean J Parasitol 48:99–103PubMedCrossRefGoogle Scholar
  24. Giorgini M, Bernardo U, Monti MM et al (2010) Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microbiol 76:2589–2599PubMedCrossRefGoogle Scholar
  25. Goddard J (2003) Experimental infection of lone star ticks, Amblyomma americanum, with Rickettsia parkeri and exposure of guinea pigs to the agent. J Med Entomol 40:686–689PubMedCrossRefGoogle Scholar
  26. Goethert HK, Telford SR 3rd (2005) A new Francisella (Beggiatiales: Francisellaceae) inquiline within Dermacentor variabilis say (Acari: Ixodidae). J Med Entomol 42:502–505PubMedCrossRefGoogle Scholar
  27. Gupta R, Lanter JM, Woese CR (1983) Sequence of the 16S Ribosomal RNA from Halobacterium volcanii, an Archaebacterium. Science 221:656–659PubMedCrossRefGoogle Scholar
  28. Heise SR, Elshahed MS, Little SE (2010) Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. J Med Entomol 47:258–268PubMedCrossRefGoogle Scholar
  29. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764PubMedCrossRefGoogle Scholar
  30. Jasinskas A, Zhong J, Barbour AG (2007) Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 73:334–336PubMedCrossRefGoogle Scholar
  31. Keen J, Farcas GA, Zhong K et al (2007) Real-time PCR assay for rapid detection and analysis of PfCRT haplotypes of chloroquine-resistant Plasmodium falciparum isolates from India. J Clin Microbiol 45:2889–2893PubMedCrossRefGoogle Scholar
  32. Klyachko O, Stein BD, Grindle N et al (2007) Localization and visualization of a coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol 73:6584–6594PubMedCrossRefGoogle Scholar
  33. Kontsedalov S, Zchori-Fein E, Chiel E et al (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792PubMedCrossRefGoogle Scholar
  34. Kurtti TJ, Palmer AT, Oliver JH Jr (2002) Rickettsiella-like bacteria in Ixodes woodi (Acari: Ixodidae). J Med Entomol 39:534–540PubMedCrossRefGoogle Scholar
  35. Labruna MB (2009) Ecology of rickettsia in South America. Ann N Y Acad Sci 1166:156–166PubMedCrossRefGoogle Scholar
  36. Lee JH, Park HS, Jang WJ et al (2004) Identification of the Coxiella sp. detected from Haemaphysalis longicornis ticks in Korea. Microbiol Immunol 48:125–130PubMedGoogle Scholar
  37. Loftis AD, Gill JS, Schriefer ME et al (2005) Detection of Rickettsia, Borrelia, and Bartonella in Carios kelleyi (Acari: Argasidae). J Med Entomol 42:473–480PubMedCrossRefGoogle Scholar
  38. Macaluso KR, Sonenshine DE, Ceraul SM et al (2001) Infection and transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by artificial feeding. Vector Borne Zoonotic Dis 1:45–53PubMedCrossRefGoogle Scholar
  39. Macaluso KR, Sonenshine DE, Ceraul SM et al (2002) Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. J Med Entomol 39:809–813PubMedCrossRefGoogle Scholar
  40. Matsumoto K, Ogawa M, Brouqui P et al (2005) Transmission of Rickettsia massiliae in the tick, Rhipicephalus turanicus. Med Vet Entomol 19:263–270PubMedCrossRefGoogle Scholar
  41. Maudlin I, Ellis DS (1985) Association between intracellular rickettsial-like infections of midgut cells and susceptibility to trypanosome infection in Glossina spp. Z Parasitenkd 71:683–687PubMedCrossRefGoogle Scholar
  42. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553PubMedGoogle Scholar
  43. Mediannikov O, Fenollar F, Socolovschi C et al (2010) Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl Trop Dis 4:e654PubMedCrossRefGoogle Scholar
  44. Moran NA, Plague GR, Sandstrom JP et al (2003) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci U S A 100(Suppl 2):14543–14548PubMedCrossRefGoogle Scholar
  45. Niebylski ML, Peacock MG, Fischer ER et al (1997a) Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl Environ Microbiol 63:3933–3940PubMedGoogle Scholar
  46. Niebylski ML, Schrumpf ME, Burgdorfer W et al (1997b) Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni, in western Montana. Int J Syst Bacteriol 47:446–452PubMedCrossRefGoogle Scholar
  47. Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63:3926–3932PubMedGoogle Scholar
  48. Paddock CD (2009) The science and fiction of emerging rickettsioses. Ann N Y Acad Sci 1166:133–143Google Scholar
  49. Parker NR, Barralet JH, Bell AM (2006) Q fever. Lancet 367:679–688PubMedCrossRefGoogle Scholar
  50. Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928PubMedCrossRefGoogle Scholar
  51. Perotti MA, Clarke HK, Turner BD et al (2006) Rickettsia as obligate and mycetomic bacteria. FASEB J 20:2372–2374PubMedCrossRefGoogle Scholar
  52. Price WH (1953) Interference phenomenon in animal infections with rickettsiae of Rocky Mountain spotted fever. Proc Soc Exp Biol Med 82:180–184PubMedGoogle Scholar
  53. Raoult D (1993) Treatment of Q fever. Antimicrob Agents Chemother 37:1733–1736PubMedCrossRefGoogle Scholar
  54. Reeves WK, Loftis AD, Priestley RA et al (2005) Molecular and biological characterization of a novel Coxiella-like agent from Carios capensis. Ann N Y Acad Sci 1063:343–345PubMedCrossRefGoogle Scholar
  55. Reinhardt C, Aeschlimann A, Hecker H (1972) Distribution of Rickettsia-like microorganisms in various organs of an Ornithodorus moubata laboratory strain (Ixodoidea, Argasidae) as revealed by electron microscopy. Z Parasitenkd 39:201–209PubMedCrossRefGoogle Scholar
  56. Rovery C, Raoult D (2008) Mediterranean spotted fever. Infect Dis Clin North Am 22:515–530, ixPubMedCrossRefGoogle Scholar
  57. Sakurai M, Koga R, Tsuchida T et al (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 71:4069–4075PubMedCrossRefGoogle Scholar
  58. Schabereiter-Gurtner C, Lubitz W, Rolleke S (2003) Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods 52:251–260PubMedCrossRefGoogle Scholar
  59. Schmidt TM, Relman DA (1994) Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences. Methods Enzymol 235:205–222PubMedCrossRefGoogle Scholar
  60. Scoles GA (2004) Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. J Med Entomol 41:277–286PubMedCrossRefGoogle Scholar
  61. Sharer JD, Koosha H, Church WB et al (1999) The function of conserved amino acid residues adjacent to the effector domain in elongation factor G. Proteins 37:293–302PubMedCrossRefGoogle Scholar
  62. Shivaprasad HL, Cadenas MB, Diab SS et al (2008) Coxiella-like infection in psittacines and a toucan. Avian Dis 52:426–432PubMedCrossRefGoogle Scholar
  63. Simser JA, Palmer AT, Munderloh UG et al (2001) Isolation of a spotted fever group Rickettsia, Rickettsia peacockii, in a Rocky Mountain wood tick, Dermacentor andersoni, cell line. Appl Environ Microbiol 67:546–552PubMedCrossRefGoogle Scholar
  64. Simser JA, Palmer AT, Fingerle V et al (2002) Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol 68:4559–4566PubMedCrossRefGoogle Scholar
  65. Stromdahl EY, Vince MA, Billingsley PM et al (2008) Rickettsia amblyommii infecting Amblyomma americanum larvae. Vector Borne Zoonotic Dis 8:15–24PubMedCrossRefGoogle Scholar
  66. Sun LV, Scoles GA, Fish D et al (2000) Francisella-like endosymbionts of ticks. J Invertebr Pathol 76:301–303PubMedCrossRefGoogle Scholar
  67. Venzal JM, Estrada-Pena A, Portillo A et al (2008) Detection of alpha and gamma-proteobacteria in Amblyomma triste (Acari: Ixodidae) from Uruguay. Exp Appl Acarol 44:49–56PubMedCrossRefGoogle Scholar
  68. Vitale G, Mansuelo S, Rolain JM et al (2006) Rickettsia massiliae human isolation. Emerg Infect Dis 12:174–175PubMedCrossRefGoogle Scholar
  69. von der Schulenburg JH, Habig M, Sloggett JJ et al (2001) Incidence of male-killing Rickettsia spp. (alpha-proteobacteria) in the ten-spot ladybird beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Appl Environ Microbiol 67:270–277PubMedCrossRefGoogle Scholar
  70. Waag DM (2007) Coxiella burnetii: host and bacterial responses to infection. Vaccine 25:7288–7295PubMedCrossRefGoogle Scholar
  71. Weller SJ, Baldridge GD, Munderloh UG et al (1998) Phylogenetic placement of rickettsiae from the ticks Amblyomma americanum and Ixodes scapularis. J Clin Microbiol 36:1305–1317PubMedGoogle Scholar
  72. Werren JH, Hurst GD, Zhang W et al (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176:388–394PubMedGoogle Scholar
  73. Weyer F (1975) Observations on the behaviour of Coxiella burneti in the argasid tick Ornithodoros moubata. Tropenmed Parasitol 26:219–231PubMedGoogle Scholar
  74. Woldehiwet Z (2004) Q fever (coxiellosis): epidemiology and pathogenesis. Res Vet Sci 77:93–100PubMedCrossRefGoogle Scholar
  75. Wu D, Daugherty SC, Van Aken SE et al (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e188PubMedCrossRefGoogle Scholar
  76. Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2:e405PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesHumboldt State UniversityArcataUSA

Personalised recommendations