Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

In the past two decades, many Coxiella-like bacteria have been found in hard ticks and soft ticks as well as in vertebrate hosts. It is interesting to note that many ticks harbor Coxiella-like bacteria with high prevalence. Coxiella-like bacteria and virulent Coxiella burnetii have high homology to each other; they form a monophyletic clade based on 16S rRNA sequence data and subsequent phylogenetic tree analyses. In this chapter, methods of detection, phylogeny, prevalence and density, distribution in tick organs, transmission routes, bacteria-host interactions, and putative functions of the Coxiella-like bacteria are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken ID (1989) Clinical aspects and prevention of Q fever in animals. Eur J Epidemiol 5:420–424

    Article  PubMed  CAS  Google Scholar 

  • Akman L, Yamashita A, Watanabe H et al (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407

    Article  PubMed  CAS  Google Scholar 

  • Angelakis E, Raoult D (2010) Q fever. Vet Microbiol 140:297–309

    Article  PubMed  CAS  Google Scholar 

  • Baldridge GD, Burkhardt NY, Simser JA et al (2004) Sequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni. Appl Environ Microbiol 70:6628–6636

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Baumann L, Lai CY et al (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94

    Article  PubMed  CAS  Google Scholar 

  • Beard CB, Dotson EM, Pennington PM et al (2001) Bacterial symbiosis and paratransgenic control of vector-borne Chagas disease. Int J Parasitol 31:621–627

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi MV, Casati S, Peter O et al (2002) Rhipicephalus ticks infected with Rickettsia and Coxiella in Southern Switzerland (Canton Ticino). Infect Genet Evol 2:111–120

    Article  PubMed  CAS  Google Scholar 

  • Burgdorfer W, Brinton LP (1975) Mechanisms of transovarial infection of spotted fever Rickettsiae in ticks. Ann N Y Acad Sci 266:61–72

    Article  PubMed  CAS  Google Scholar 

  • Burgdorfer W, Brinton LP, Hughes LE (1973) Isolation and characterization of symbiotes from the Rocky Mountain wood tick, Dermacentor andersoni. J Invertebr Pathol 22:424–434

    Article  PubMed  CAS  Google Scholar 

  • Burgdorfer W, Hayes SF, Mavros AJ (1981) Nonpathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii. In: Burgdorfer W, Anacker RL (eds) Rickettsiae and rickettsial diseases. Academic, New York

    Google Scholar 

  • Childs JE, Paddock CD (2003) The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. Annu Rev Entomol 48:307–337

    Article  PubMed  CAS  Google Scholar 

  • Clay K, Klyachko O, Grindle N et al (2008) Microbial communities and interactions in the lone star tick, Amblyomma americanum. Mol Ecol 17:4371–4381

    Article  PubMed  CAS  Google Scholar 

  • Daiter AB (1977) Transovarial and transspermal transmission of Coxiella burneti by the tick Hyalomma asiaticum and its role in the ecology of Q-rickettsiosis. Parazitologiia 11:403–411

    PubMed  CAS  Google Scholar 

  • De LP, Lennette EH, Deome KB (1950) Q fever in California; recovery of Coxiella burnetii from naturally-infected air-borne dust. J Immunol 65:211–220

    Google Scholar 

  • Dergousoff SJ, Gajadhar AJ, Chilton NB (2009) Prevalence of Rickettsia species in Canadian populations of Dermacentor andersoni and D. variabilis. Appl Environ Microbiol 75:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Derrick EH (1937) Q fever, a new fever entity: clinical features, diagnosis and laboratory investigation. Med J Aust 2:281

    Google Scholar 

  • Douglas AE (2007) Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol 25:338–342

    Article  PubMed  CAS  Google Scholar 

  • Drago L, Lombardi A, De Vecchi E et al (2004) Comparison of nested PCR and real time PCR of Herpesvirus infections of central nervous system in HIV patients. BMC Infect Dis 4:55

    Article  PubMed  Google Scholar 

  • Farcas GA, Zhong KJ, Mazzulli T et al (2004) Evaluation of the RealArt Malaria LC real-time PCR assay for malaria diagnosis. J Clin Microbiol 42:636–638

    Article  PubMed  CAS  Google Scholar 

  • Faria e Silva PM, Fiorini JE, Soares MJ et al (1994) Membrane-associated polysaccharides composition, nutritional requirements and cell differentiation in Herpetomonas roitmani: influence of the endosymbiont. J Eukaryot Microbiol 41:55–59

    Article  PubMed  CAS  Google Scholar 

  • Fox GE, Magrum LJ, Balch WE et al (1977) Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A 74:4537–4541

    Article  PubMed  CAS  Google Scholar 

  • Freitas LH, Faccini JL, Labruna MB (2009) Experimental infection of the rabbit tick, Haemaphysalis leporispalustris, with the bacterium Rickettsia rickettsii, and comparative biology of infected and uninfected tick lineages. Exp Appl Acarol 47:321–345

    Article  PubMed  Google Scholar 

  • Genc A, Eroglu F, Koltas IS (2010) Detection of Plasmodium vivax by nested PCR and real-time PCR. Korean J Parasitol 48:99–103

    Article  PubMed  CAS  Google Scholar 

  • Giorgini M, Bernardo U, Monti MM et al (2010) Rickettsia symbionts cause parthenogenetic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl Environ Microbiol 76:2589–2599

    Article  PubMed  CAS  Google Scholar 

  • Goddard J (2003) Experimental infection of lone star ticks, Amblyomma americanum, with Rickettsia parkeri and exposure of guinea pigs to the agent. J Med Entomol 40:686–689

    Article  PubMed  Google Scholar 

  • Goethert HK, Telford SR 3rd (2005) A new Francisella (Beggiatiales: Francisellaceae) inquiline within Dermacentor variabilis say (Acari: Ixodidae). J Med Entomol 42:502–505

    Article  PubMed  Google Scholar 

  • Gupta R, Lanter JM, Woese CR (1983) Sequence of the 16S Ribosomal RNA from Halobacterium volcanii, an Archaebacterium. Science 221:656–659

    Article  PubMed  CAS  Google Scholar 

  • Heise SR, Elshahed MS, Little SE (2010) Bacterial diversity in Amblyomma americanum (Acari: Ixodidae) with a focus on members of the genus Rickettsia. J Med Entomol 47:258–268

    Article  PubMed  CAS  Google Scholar 

  • Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    Article  PubMed  CAS  Google Scholar 

  • Jasinskas A, Zhong J, Barbour AG (2007) Highly prevalent Coxiella sp. bacterium in the tick vector Amblyomma americanum. Appl Environ Microbiol 73:334–336

    Article  PubMed  CAS  Google Scholar 

  • Keen J, Farcas GA, Zhong K et al (2007) Real-time PCR assay for rapid detection and analysis of PfCRT haplotypes of chloroquine-resistant Plasmodium falciparum isolates from India. J Clin Microbiol 45:2889–2893

    Article  PubMed  CAS  Google Scholar 

  • Klyachko O, Stein BD, Grindle N et al (2007) Localization and visualization of a coxiella-type symbiont within the lone star tick, Amblyomma americanum. Appl Environ Microbiol 73:6584–6594

    Article  PubMed  CAS  Google Scholar 

  • Kontsedalov S, Zchori-Fein E, Chiel E et al (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest Manag Sci 64:789–792

    Article  PubMed  CAS  Google Scholar 

  • Kurtti TJ, Palmer AT, Oliver JH Jr (2002) Rickettsiella-like bacteria in Ixodes woodi (Acari: Ixodidae). J Med Entomol 39:534–540

    Article  PubMed  Google Scholar 

  • Labruna MB (2009) Ecology of rickettsia in South America. Ann N Y Acad Sci 1166:156–166

    Article  PubMed  Google Scholar 

  • Lee JH, Park HS, Jang WJ et al (2004) Identification of the Coxiella sp. detected from Haemaphysalis longicornis ticks in Korea. Microbiol Immunol 48:125–130

    PubMed  CAS  Google Scholar 

  • Loftis AD, Gill JS, Schriefer ME et al (2005) Detection of Rickettsia, Borrelia, and Bartonella in Carios kelleyi (Acari: Argasidae). J Med Entomol 42:473–480

    Article  PubMed  CAS  Google Scholar 

  • Macaluso KR, Sonenshine DE, Ceraul SM et al (2001) Infection and transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by artificial feeding. Vector Borne Zoonotic Dis 1:45–53

    Article  PubMed  CAS  Google Scholar 

  • Macaluso KR, Sonenshine DE, Ceraul SM et al (2002) Rickettsial infection in Dermacentor variabilis (Acari: Ixodidae) inhibits transovarial transmission of a second Rickettsia. J Med Entomol 39:809–813

    Article  PubMed  Google Scholar 

  • Matsumoto K, Ogawa M, Brouqui P et al (2005) Transmission of Rickettsia massiliae in the tick, Rhipicephalus turanicus. Med Vet Entomol 19:263–270

    Article  PubMed  CAS  Google Scholar 

  • Maudlin I, Ellis DS (1985) Association between intracellular rickettsial-like infections of midgut cells and susceptibility to trypanosome infection in Glossina spp. Z Parasitenkd 71:683–687

    Article  PubMed  CAS  Google Scholar 

  • Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553

    PubMed  CAS  Google Scholar 

  • Mediannikov O, Fenollar F, Socolovschi C et al (2010) Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl Trop Dis 4:e654

    Article  PubMed  Google Scholar 

  • Moran NA, Plague GR, Sandstrom JP et al (2003) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci U S A 100(Suppl 2):14543–14548

    Article  PubMed  CAS  Google Scholar 

  • Niebylski ML, Peacock MG, Fischer ER et al (1997a) Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, as a member of the genus Francisella. Appl Environ Microbiol 63:3933–3940

    PubMed  CAS  Google Scholar 

  • Niebylski ML, Schrumpf ME, Burgdorfer W et al (1997b) Rickettsia peacockii sp. nov., a new species infecting wood ticks, Dermacentor andersoni, in western Montana. Int J Syst Bacteriol 47:446–452

    Article  PubMed  CAS  Google Scholar 

  • Noda H, Munderloh UG, Kurtti TJ (1997) Endosymbionts of ticks and their relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl Environ Microbiol 63:3926–3932

    PubMed  CAS  Google Scholar 

  • Paddock CD (2009) The science and fiction of emerging rickettsioses. Ann N Y Acad Sci 1166:133–143

    Google Scholar 

  • Parker NR, Barralet JH, Bell AM (2006) Q fever. Lancet 367:679–688

    Article  PubMed  Google Scholar 

  • Parola P, Raoult D (2001) Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32:897–928

    Article  PubMed  CAS  Google Scholar 

  • Perotti MA, Clarke HK, Turner BD et al (2006) Rickettsia as obligate and mycetomic bacteria. FASEB J 20:2372–2374

    Article  PubMed  CAS  Google Scholar 

  • Price WH (1953) Interference phenomenon in animal infections with rickettsiae of Rocky Mountain spotted fever. Proc Soc Exp Biol Med 82:180–184

    PubMed  CAS  Google Scholar 

  • Raoult D (1993) Treatment of Q fever. Antimicrob Agents Chemother 37:1733–1736

    Article  PubMed  CAS  Google Scholar 

  • Reeves WK, Loftis AD, Priestley RA et al (2005) Molecular and biological characterization of a novel Coxiella-like agent from Carios capensis. Ann N Y Acad Sci 1063:343–345

    Article  PubMed  Google Scholar 

  • Reinhardt C, Aeschlimann A, Hecker H (1972) Distribution of Rickettsia-like microorganisms in various organs of an Ornithodorus moubata laboratory strain (Ixodoidea, Argasidae) as revealed by electron microscopy. Z Parasitenkd 39:201–209

    Article  PubMed  CAS  Google Scholar 

  • Rovery C, Raoult D (2008) Mediterranean spotted fever. Infect Dis Clin North Am 22:515–530, ix

    Article  PubMed  Google Scholar 

  • Sakurai M, Koga R, Tsuchida T et al (2005) Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol 71:4069–4075

    Article  PubMed  CAS  Google Scholar 

  • Schabereiter-Gurtner C, Lubitz W, Rolleke S (2003) Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods 52:251–260

    Article  PubMed  CAS  Google Scholar 

  • Schmidt TM, Relman DA (1994) Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences. Methods Enzymol 235:205–222

    Article  PubMed  CAS  Google Scholar 

  • Scoles GA (2004) Phylogenetic analysis of the Francisella-like endosymbionts of Dermacentor ticks. J Med Entomol 41:277–286

    Article  PubMed  CAS  Google Scholar 

  • Sharer JD, Koosha H, Church WB et al (1999) The function of conserved amino acid residues adjacent to the effector domain in elongation factor G. Proteins 37:293–302

    Article  PubMed  CAS  Google Scholar 

  • Shivaprasad HL, Cadenas MB, Diab SS et al (2008) Coxiella-like infection in psittacines and a toucan. Avian Dis 52:426–432

    Article  PubMed  CAS  Google Scholar 

  • Simser JA, Palmer AT, Munderloh UG et al (2001) Isolation of a spotted fever group Rickettsia, Rickettsia peacockii, in a Rocky Mountain wood tick, Dermacentor andersoni, cell line. Appl Environ Microbiol 67:546–552

    Article  PubMed  CAS  Google Scholar 

  • Simser JA, Palmer AT, Fingerle V et al (2002) Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol 68:4559–4566

    Article  PubMed  CAS  Google Scholar 

  • Stromdahl EY, Vince MA, Billingsley PM et al (2008) Rickettsia amblyommii infecting Amblyomma americanum larvae. Vector Borne Zoonotic Dis 8:15–24

    Article  PubMed  Google Scholar 

  • Sun LV, Scoles GA, Fish D et al (2000) Francisella-like endosymbionts of ticks. J Invertebr Pathol 76:301–303

    Article  PubMed  CAS  Google Scholar 

  • Venzal JM, Estrada-Pena A, Portillo A et al (2008) Detection of alpha and gamma-proteobacteria in Amblyomma triste (Acari: Ixodidae) from Uruguay. Exp Appl Acarol 44:49–56

    Article  PubMed  Google Scholar 

  • Vitale G, Mansuelo S, Rolain JM et al (2006) Rickettsia massiliae human isolation. Emerg Infect Dis 12:174–175

    Article  PubMed  Google Scholar 

  • von der Schulenburg JH, Habig M, Sloggett JJ et al (2001) Incidence of male-killing Rickettsia spp. (alpha-proteobacteria) in the ten-spot ladybird beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Appl Environ Microbiol 67:270–277

    Article  PubMed  Google Scholar 

  • Waag DM (2007) Coxiella burnetii: host and bacterial responses to infection. Vaccine 25:7288–7295

    Article  PubMed  CAS  Google Scholar 

  • Weller SJ, Baldridge GD, Munderloh UG et al (1998) Phylogenetic placement of rickettsiae from the ticks Amblyomma americanum and Ixodes scapularis. J Clin Microbiol 36:1305–1317

    PubMed  CAS  Google Scholar 

  • Werren JH, Hurst GD, Zhang W et al (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176:388–394

    PubMed  CAS  Google Scholar 

  • Weyer F (1975) Observations on the behaviour of Coxiella burneti in the argasid tick Ornithodoros moubata. Tropenmed Parasitol 26:219–231

    PubMed  CAS  Google Scholar 

  • Woldehiwet Z (2004) Q fever (coxiellosis): epidemiology and pathogenesis. Res Vet Sci 77:93–100

    Article  PubMed  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE et al (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e188

    Article  PubMed  Google Scholar 

  • Zhong J, Jasinskas A, Barbour AG (2007) Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One 2:e405

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhong, J. (2012). Coxiella-like Endosymbionts. In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_18

Download citation

Publish with us

Policies and ethics