Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

Coxiella burnetii, the causative agent of Q fever, has evolved a wealth of mechanisms in order to persist within hosts. Two tissues, namely adipose tissue and placenta, are candidates to house C. burnetii, but the mechanisms governing C. burnetii survival in these tissues are still unknown. In contrast, monocytes and macrophages are well-known targets of C. burnetii. First, C. burnetii has developed a specific strategy of phagocytosis subversion that consists of the inhibition of integrin interplay. Second, C. burnetii persistence is associated with macrophage activation profiles. Indeed, monocytes (in which C. burnetii survives without replication) exhibit a proinflammatory M1-type response, whereas macrophages (in which C. burnetii slowly replicates) are polarized towards an M2-type. Third, interleukin-10 produced by monocytes is a main factor of the chronic development of Q fever, and murine models confirm the key role of interleukin-10 in C. burnetii persistence. Fourth, apoptotic cells may play a key role in chronic Q fever. The uptake of apoptotic cells by circulating monocytes increases C. burnetii replication by redirecting monocytes toward a non-protective M2 profile. In the presence of interferon-γ, apoptotic cell engulfment is inhibited and monocytes polarized toward an M1 program are able to kill C. burnetii; this is the situation observed in patients with uncomplicated acute Q fever. Finally, we cannot exclude that regulatory T cells may play a role in C. burnetii persistence because their number is increased in patients with chronic Q fever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bechah Y, Paddock CD, Capo C et al (2010) Adipose tissue serves as a reservoir for recrudescent Rickettsia prowazekii infection in a mouse model. PLoS One 5:e8547

    Article  PubMed  Google Scholar 

  • Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360

    Article  PubMed  CAS  Google Scholar 

  • Ben Amara A, Ghigo E, Le Priol Y et al (2010) Coxiella burnetii, the agent of Q fever, replicates within trophoblasts and induces a unique transcriptional response. PLoS One 5:e15315

    Article  PubMed  CAS  Google Scholar 

  • Benoit M, Barbarat B, Bernard A et al (2008a) Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 38:1065–1070

    Article  PubMed  CAS  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008b) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    PubMed  CAS  Google Scholar 

  • Benoit M, Ghigo E, Capo C et al (2008c) The uptake of apoptotic cells drives Coxiella burnetii replication and macrophage polarization: a model for Q fever endocarditis. PLoS Pathog 4:e1000066

    Article  PubMed  Google Scholar 

  • Benoit M, Thuny F, Le Priol Y et al (2010) The transcriptional programme of human heart valves reveals the natural history of infective endocarditis. PLoS One 5:e8939

    Article  PubMed  Google Scholar 

  • Capo C, Zaffran Y, Zugun F et al (1996) Production of interleukin-10 and transforming growth factor beta by peripheral blood mononuclear cells in Q fever endocarditis. Infect Immun 64:4143–4147

    PubMed  CAS  Google Scholar 

  • Capo C, Lindberg FP, Meconi S et al (1999) Subversion of monocyte functions by Coxiella burnetii: impairment of the cross-talk between αvβ3 integrin and CR3. J Immunol 163:6078–6085

    PubMed  CAS  Google Scholar 

  • Combs TP, Nagajyothi MS et al (2005) The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280:24085–24094

    Article  PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Capo C, Raoult D et al (1999) IFN-γ-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162:2259–2265

    PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Ghigo E, Capo C et al (2000a) Coxiella burnetii survives in monocytes from patients with Q fever endocarditis: involvement of tumor necrosis factor. Infect Immun 68:160–164

    Article  PubMed  CAS  Google Scholar 

  • Dellacasagrande J, Ghigo E, Hammami SM et al (2000b) αvβ3 integrin and bacterial lipopolysaccharide are involved in Coxiella burnetii-stimulated production of tumor necrosis factor by human monocytes. Infect Immun 68:5673–5678

    Article  PubMed  CAS  Google Scholar 

  • Desruisseaux MS, Nagajyothi TME et al (2007) Adipocyte, adipose tissue, and infectious disease. Infect Immun 75:1066–1078

    Article  PubMed  CAS  Google Scholar 

  • Ghigo E, Capo C, Amirayan N et al (2000) The 75-kD tumour necrosis factor (TNF) receptor is specifically up-regulated in monocytes during Q fever endocarditis. Clin Exp Immunol 121:295–301

    Article  PubMed  CAS  Google Scholar 

  • Ghigo E, Capo C, Raoult D et al (2001) Interleukin-10 stimulates Coxiella burnetii replication in human monocytes through tumor necrosis factor down-modulation: role in microbicidal defect of Q fever. Infect Immun 69:2345–2352

    Article  PubMed  CAS  Google Scholar 

  • Ghigo E, Capo C, Tung CH et al (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-γ mediates its restoration and bacterial killing. J Immunol 169:4488–4495

    PubMed  CAS  Google Scholar 

  • Ghigo E, Honstettre A, Capo C et al (2004) Link between impaired maturation of phagosomes and defective Coxiella burnetii killing in patients with chronic Q fever. J Infect Dis 190:1767–1772

    Article  PubMed  CAS  Google Scholar 

  • Harris RJ, Storm PA, Lloyd A et al (2000) Long-term persistence of Coxiella burnetii in the host after primary Q fever. Epidemiol Infect 124:543–549

    Article  PubMed  CAS  Google Scholar 

  • Honstettre A, Imbert G, Ghigo E et al (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187:956–962

    Article  PubMed  CAS  Google Scholar 

  • Honstettre A, Meghari S, Nunes JA et al (2006) Role for the CD28 molecule in the control of Coxiella burnetii infection. Infect Immun 74:1800–1808

    Article  PubMed  CAS  Google Scholar 

  • Langley JM, Marrie TJ, Covert A et al (1988) Poker players’ pneumonia. An urban outbreak of Q fever following exposure to a parturient cat. N Engl J Med 319:354–356

    Article  PubMed  CAS  Google Scholar 

  • Layez C, Brunet C, Lépolard C et al (2012) Foxp3+CD4+CD25+ regulatory T cells are increased in patients with Coxiella burnetii endocarditis. FEMS Immunol Med Microbiol 64:137–139

    Google Scholar 

  • Luhrmann A, Roy CR (2007) Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 75:5282–5289

    Article  PubMed  CAS  Google Scholar 

  • Luhrmann A, Nogueira CV, Carey KL et al (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107:18997–19001

    Article  PubMed  CAS  Google Scholar 

  • Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184

    Article  PubMed  CAS  Google Scholar 

  • Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  PubMed  CAS  Google Scholar 

  • Martinoli C, Chiavelli A, Rescigno M (2007) Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27:975–984

    Article  PubMed  CAS  Google Scholar 

  • Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553

    PubMed  CAS  Google Scholar 

  • Meconi S, Jacomo V, Boquet P et al (1998) Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect Immun 66:5527–5533

    PubMed  CAS  Google Scholar 

  • Meconi S, Capo C, Remacle-Bonnet M et al (2001) Activation of protein tyrosine kinases by Coxiella burnetii: role in actin cytoskeleton reorganization and bacterial phagocytosis. Infect Immun 69:2520–2526

    Article  PubMed  CAS  Google Scholar 

  • Mege JL, Meghari S, Honstettre A et al (2006) The two faces of interleukin 10 in human infectious diseases. Lancet Infect Dis 6:557–569

    Article  PubMed  CAS  Google Scholar 

  • Mege JL, Mehraj V, Capo C (2012) Macrophage polarization and bacterial infections. Curr Opin Infect Dis 24:230–234

    Article  PubMed  Google Scholar 

  • Meghari S, Capo C, Raoult D et al (2006) Deficient transendothelial migration of leukocytes in Q fever: the role played by interleukin-10. J Infect Dis 194:365–369

    Article  PubMed  CAS  Google Scholar 

  • Meghari S, Berruyer C, Lepidi H et al (2007) Vanin-1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection. Eur J Immunol 37:24–32

    Article  PubMed  CAS  Google Scholar 

  • Meghari S, Bechah Y, Capo C et al (2008) Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4:e23

    Article  PubMed  Google Scholar 

  • Munz-Elias EJ, Mc Kinney JD (2002) Bacterial persistence: strategies for survival. In: Kaufmann SHE, Sher A, Ahmed R (eds) Immunology of infectious diseases. ASM Press, Washington, DC, pp 331–355

    Google Scholar 

  • Neyrolles O, Hernandez-Pando R, Pietri-Rouxel F et al (2006) Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One 1:e43

    Article  PubMed  Google Scholar 

  • Ohashi K, Parker JL, Ouchi N et al (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem 285:6153–6160

    Article  PubMed  CAS  Google Scholar 

  • Ouchi N, Parker JL, Lugus JJ et al (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97

    Article  PubMed  CAS  Google Scholar 

  • Roy CR, Mocarski ES (2007) Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 8:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Sansonetti PJ, Di Santo JP (2007) Debugging how bacteria manipulate the immune response. Immunity 26:149–161

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2006) From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25:195–201

    Article  PubMed  CAS  Google Scholar 

  • Stein A, Lepidi H, Mege JL et al (2000) Repeated pregnancies in BALB/c mice infected with Coxiella burnetii cause disseminated infection, resulting in stillbirth and endocarditis. J Infect Dis 181:188–194

    Article  PubMed  CAS  Google Scholar 

  • Tissot-Dupont H, Amadei MA, Nezri M et al (2004) Wind in November, Q fever in December. Emerg Infect Dis 10:1264–1269

    Article  PubMed  Google Scholar 

  • Voth DE, Howe D, Heinzen RA (2007) Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 75:4263–4271

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Mege .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amara, A.B., Bechah, Y., Mege, JL. (2012). Immune Response and Coxiella burnetii Invasion. In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_15

Download citation

Publish with us

Policies and ethics