Immune Response and Coxiella burnetii Invasion

  • Amira Ben Amara
  • Yassina Bechah
  • Jean-Louis Mege
Part of the Advances in Experimental Medicine and Biology book series (volume 984)


Coxiella burnetii, the causative agent of Q fever, has evolved a wealth of mechanisms in order to persist within hosts. Two tissues, namely adipose tissue and placenta, are candidates to house C. burnetii, but the mechanisms governing C. burnetii survival in these tissues are still unknown. In contrast, monocytes and macrophages are well-known targets of C. burnetii. First, C. burnetii has developed a specific strategy of phagocytosis subversion that consists of the inhibition of integrin interplay. Second, C. burnetii persistence is associated with macrophage activation profiles. Indeed, monocytes (in which C. burnetii survives without replication) exhibit a proinflammatory M1-type response, whereas macrophages (in which C. burnetii slowly replicates) are polarized towards an M2-type. Third, interleukin-10 produced by monocytes is a main factor of the chronic development of Q fever, and murine models confirm the key role of interleukin-10 in C. burnetii persistence. Fourth, apoptotic cells may play a key role in chronic Q fever. The uptake of apoptotic cells by circulating monocytes increases C. burnetii replication by redirecting monocytes toward a non-protective M2 profile. In the presence of interferon-γ, apoptotic cell engulfment is inhibited and monocytes polarized toward an M1 program are able to kill C. burnetii; this is the situation observed in patients with uncomplicated acute Q fever. Finally, we cannot exclude that regulatory T cells may play a role in C. burnetii persistence because their number is increased in patients with chronic Q fever.


Adipose tissue Apoptosis Coxiella burnetii Interleukin-10 Macrophage polarization Monocytes Placenta Q fever Regulatory T cells 


  1. Bechah Y, Paddock CD, Capo C et al (2010) Adipose tissue serves as a reservoir for recrudescent Rickettsia prowazekii infection in a mouse model. PLoS One 5:e8547PubMedCrossRefGoogle Scholar
  2. Belkaid Y, Rouse BT (2005) Natural regulatory T cells in infectious disease. Nat Immunol 6:353–360PubMedCrossRefGoogle Scholar
  3. Ben Amara A, Ghigo E, Le Priol Y et al (2010) Coxiella burnetii, the agent of Q fever, replicates within trophoblasts and induces a unique transcriptional response. PLoS One 5:e15315PubMedCrossRefGoogle Scholar
  4. Benoit M, Barbarat B, Bernard A et al (2008a) Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 38:1065–1070PubMedCrossRefGoogle Scholar
  5. Benoit M, Desnues B, Mege JL (2008b) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739PubMedGoogle Scholar
  6. Benoit M, Ghigo E, Capo C et al (2008c) The uptake of apoptotic cells drives Coxiella burnetii replication and macrophage polarization: a model for Q fever endocarditis. PLoS Pathog 4:e1000066PubMedCrossRefGoogle Scholar
  7. Benoit M, Thuny F, Le Priol Y et al (2010) The transcriptional programme of human heart valves reveals the natural history of infective endocarditis. PLoS One 5:e8939PubMedCrossRefGoogle Scholar
  8. Capo C, Zaffran Y, Zugun F et al (1996) Production of interleukin-10 and transforming growth factor beta by peripheral blood mononuclear cells in Q fever endocarditis. Infect Immun 64:4143–4147PubMedGoogle Scholar
  9. Capo C, Lindberg FP, Meconi S et al (1999) Subversion of monocyte functions by Coxiella burnetii: impairment of the cross-talk between αvβ3 integrin and CR3. J Immunol 163:6078–6085PubMedGoogle Scholar
  10. Combs TP, Nagajyothi MS et al (2005) The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280:24085–24094PubMedCrossRefGoogle Scholar
  11. Dellacasagrande J, Capo C, Raoult D et al (1999) IFN-γ-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162:2259–2265PubMedGoogle Scholar
  12. Dellacasagrande J, Ghigo E, Capo C et al (2000a) Coxiella burnetii survives in monocytes from patients with Q fever endocarditis: involvement of tumor necrosis factor. Infect Immun 68:160–164PubMedCrossRefGoogle Scholar
  13. Dellacasagrande J, Ghigo E, Hammami SM et al (2000b) αvβ3 integrin and bacterial lipopolysaccharide are involved in Coxiella burnetii-stimulated production of tumor necrosis factor by human monocytes. Infect Immun 68:5673–5678PubMedCrossRefGoogle Scholar
  14. Desruisseaux MS, Nagajyothi TME et al (2007) Adipocyte, adipose tissue, and infectious disease. Infect Immun 75:1066–1078PubMedCrossRefGoogle Scholar
  15. Ghigo E, Capo C, Amirayan N et al (2000) The 75-kD tumour necrosis factor (TNF) receptor is specifically up-regulated in monocytes during Q fever endocarditis. Clin Exp Immunol 121:295–301PubMedCrossRefGoogle Scholar
  16. Ghigo E, Capo C, Raoult D et al (2001) Interleukin-10 stimulates Coxiella burnetii replication in human monocytes through tumor necrosis factor down-modulation: role in microbicidal defect of Q fever. Infect Immun 69:2345–2352PubMedCrossRefGoogle Scholar
  17. Ghigo E, Capo C, Tung CH et al (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-γ mediates its restoration and bacterial killing. J Immunol 169:4488–4495PubMedGoogle Scholar
  18. Ghigo E, Honstettre A, Capo C et al (2004) Link between impaired maturation of phagosomes and defective Coxiella burnetii killing in patients with chronic Q fever. J Infect Dis 190:1767–1772PubMedCrossRefGoogle Scholar
  19. Harris RJ, Storm PA, Lloyd A et al (2000) Long-term persistence of Coxiella burnetii in the host after primary Q fever. Epidemiol Infect 124:543–549PubMedCrossRefGoogle Scholar
  20. Honstettre A, Imbert G, Ghigo E et al (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187:956–962PubMedCrossRefGoogle Scholar
  21. Honstettre A, Meghari S, Nunes JA et al (2006) Role for the CD28 molecule in the control of Coxiella burnetii infection. Infect Immun 74:1800–1808PubMedCrossRefGoogle Scholar
  22. Langley JM, Marrie TJ, Covert A et al (1988) Poker players’ pneumonia. An urban outbreak of Q fever following exposure to a parturient cat. N Engl J Med 319:354–356PubMedCrossRefGoogle Scholar
  23. Layez C, Brunet C, Lépolard C et al (2012) Foxp3+CD4+CD25+ regulatory T cells are increased in patients with Coxiella burnetii endocarditis. FEMS Immunol Med Microbiol 64:137–139Google Scholar
  24. Luhrmann A, Roy CR (2007) Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 75:5282–5289PubMedCrossRefGoogle Scholar
  25. Luhrmann A, Nogueira CV, Carey KL et al (2010) Inhibition of pathogen-induced apoptosis by a Coxiella burnetii type IV effector protein. Proc Natl Acad Sci U S A 107:18997–19001PubMedCrossRefGoogle Scholar
  26. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184PubMedCrossRefGoogle Scholar
  27. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483PubMedCrossRefGoogle Scholar
  28. Martinoli C, Chiavelli A, Rescigno M (2007) Entry route of Salmonella typhimurium directs the type of induced immune response. Immunity 27:975–984PubMedCrossRefGoogle Scholar
  29. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553PubMedGoogle Scholar
  30. Meconi S, Jacomo V, Boquet P et al (1998) Coxiella burnetii induces reorganization of the actin cytoskeleton in human monocytes. Infect Immun 66:5527–5533PubMedGoogle Scholar
  31. Meconi S, Capo C, Remacle-Bonnet M et al (2001) Activation of protein tyrosine kinases by Coxiella burnetii: role in actin cytoskeleton reorganization and bacterial phagocytosis. Infect Immun 69:2520–2526PubMedCrossRefGoogle Scholar
  32. Mege JL, Meghari S, Honstettre A et al (2006) The two faces of interleukin 10 in human infectious diseases. Lancet Infect Dis 6:557–569PubMedCrossRefGoogle Scholar
  33. Mege JL, Mehraj V, Capo C (2012) Macrophage polarization and bacterial infections. Curr Opin Infect Dis 24:230–234PubMedCrossRefGoogle Scholar
  34. Meghari S, Capo C, Raoult D et al (2006) Deficient transendothelial migration of leukocytes in Q fever: the role played by interleukin-10. J Infect Dis 194:365–369PubMedCrossRefGoogle Scholar
  35. Meghari S, Berruyer C, Lepidi H et al (2007) Vanin-1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection. Eur J Immunol 37:24–32PubMedCrossRefGoogle Scholar
  36. Meghari S, Bechah Y, Capo C et al (2008) Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4:e23PubMedCrossRefGoogle Scholar
  37. Munz-Elias EJ, Mc Kinney JD (2002) Bacterial persistence: strategies for survival. In: Kaufmann SHE, Sher A, Ahmed R (eds) Immunology of infectious diseases. ASM Press, Washington, DC, pp 331–355Google Scholar
  38. Neyrolles O, Hernandez-Pando R, Pietri-Rouxel F et al (2006) Is adipose tissue a place for Mycobacterium tuberculosis persistence? PLoS One 1:e43PubMedCrossRefGoogle Scholar
  39. Ohashi K, Parker JL, Ouchi N et al (2010) Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J Biol Chem 285:6153–6160PubMedCrossRefGoogle Scholar
  40. Ouchi N, Parker JL, Lugus JJ et al (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97PubMedCrossRefGoogle Scholar
  41. Roy CR, Mocarski ES (2007) Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 8:1179–1187PubMedCrossRefGoogle Scholar
  42. Sansonetti PJ, Di Santo JP (2007) Debugging how bacteria manipulate the immune response. Immunity 26:149–161PubMedCrossRefGoogle Scholar
  43. Shevach EM (2006) From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25:195–201PubMedCrossRefGoogle Scholar
  44. Stein A, Lepidi H, Mege JL et al (2000) Repeated pregnancies in BALB/c mice infected with Coxiella burnetii cause disseminated infection, resulting in stillbirth and endocarditis. J Infect Dis 181:188–194PubMedCrossRefGoogle Scholar
  45. Tissot-Dupont H, Amadei MA, Nezri M et al (2004) Wind in November, Q fever in December. Emerg Infect Dis 10:1264–1269PubMedCrossRefGoogle Scholar
  46. Voth DE, Howe D, Heinzen RA (2007) Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun 75:4263–4271PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Amira Ben Amara
    • 1
  • Yassina Bechah
    • 1
  • Jean-Louis Mege
    • 1
  1. 1.Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, CNRS-IRD UMR 6236, Institut Fédératif de Recherche 48, Faculté de MédecineUniversité de la MéditerranéeMarseilleFrance

Personalised recommendations