Advertisement

Role of Innate and Adaptive Immunity in the Control of Q Fever

  • Christian Capo
  • Jean-Louis Mege
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 984)

Abstract

Acute Q fever is commonly resolved without an antibiotic regimen, but a primary infection may develop into a chronic infection in a minority of cases. Coxiella burnetii, the causative agent of Q fever, is known to infect macrophages both in vitro and in vivo. It has been observed that the intracellular survival of C. burnetii requires the subversion of the microbicidal properties of macrophages. Adaptive immunity is also essential to cure C. burnetii infection, as demonstrated by clinical studies and animal models. Indeed, the control of infection in patients with primary Q fever involves a systemic cell-mediated immune response and granuloma formation with an essential role for interferon-γ in the protection against C. burnetii. In contrast, chronic Q fever is characterized by defective cell-mediated immunity with the defective formation of granulomas and over-production of interleukin-10, an immunoregulatory cytokine. Finally, epidemiological data demonstrate that age and gender are risk factors for Q fever. The analysis of gene expression programs in mice reveals the importance of sex-related genes in C. burnetii infection because only 14% of the modulated genes are sex-independent, while the remaining 86% are differentially expressed in males and females. These results open a new field to understand how host metabolism controls C. burnetii infection in humans.

Keywords

Age Antibodies Coxiella burnetii Cytokines Gender Granulomas Macrophages Q fever T lymphocytes 

References

  1. Akporiaye ET, Stefanovich D, Tsosie V et al (1990) Coxiella burnetii fails to stimulate human neutrophil superoxide anion production. Acta Virol 34:64–70PubMedGoogle Scholar
  2. Andoh M, Naganawa T, Hotta A et al (2003) SCID mouse model for lethal Q fever. Infect Immun 71:4717–4723PubMedCrossRefGoogle Scholar
  3. Andoh M, Zhang G, Russell-Lodrigue KE et al (2007) T cells are essential for bacterial clearance, and γ interferon, tumor necrosis factor α, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun 75:3245–3255PubMedCrossRefGoogle Scholar
  4. Ayres JG, Flint N, Smith EG et al (1998) Post-infection fatigue syndrome following Q fever. QJM 91:105–123PubMedCrossRefGoogle Scholar
  5. Benoit M, Barbarat B, Bernard A et al (2008) Coxiella burnetii, the agent of Q fever, stimulates an atypical M2 activation program in human macrophages. Eur J Immunol 38:1065–1070PubMedCrossRefGoogle Scholar
  6. Brennan RE, Russell K, Zhang G et al (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72:6666–6675PubMedCrossRefGoogle Scholar
  7. Brouqui P, Tissot-Dupont H, Drancourt M et al (1993) Chronic Q fever. Ninety-two cases from France, including 27 cases without endocarditis. Arch Intern Med 153:642–648PubMedCrossRefGoogle Scholar
  8. Capo C, Zaffran Y, Zugun F et al (1996a) Production of interleukin-10 and transforming growth factor beta by peripheral blood mononuclear cells in Q fever endocarditis. Infect Immun 64:4143–4147PubMedGoogle Scholar
  9. Capo C, Zugun F, Stein A et al (1996b) Upregulation of tumor necrosis factor-α and interleukin-1β in Q fever endocarditis. Infect Immun 64:1638–1642PubMedGoogle Scholar
  10. Capo C, Amirayan N, Ghigo E et al (1999) Circulating cytokine balance and activation markers of leucocytes in Q fever. Clin Exp Immunol 115:120–123PubMedCrossRefGoogle Scholar
  11. Clifton DR, Goss RA, Sahni SK et al (1998) NF-κB-dependent inhibition of apoptosis is essential for host cell survival during Rickettsia rickettsii infection. Proc Natl Acad Sci U S A 95:4646–4651PubMedCrossRefGoogle Scholar
  12. Collins H, Kaufmann SHE (2002) Acquired immunity against bacteria. In: Kaufmann SHE, Sher A, Ahmed R (eds) Immunology of infectious diseases. ASM Press, Washington, pp 207–221Google Scholar
  13. Delaby A, Espinosa L, Lepolard C et al (2010) 3D reconstruction of granulomas from transmitted light images implemented for long-time microscope applications. J Immunol Methods 360:10–19PubMedCrossRefGoogle Scholar
  14. Delaby A, Gorvel L, Espinosa L et al (2012) Defective monocyte dynamics in Q fever granuloma deficiency. J Infect Dis 205:1086–1094Google Scholar
  15. Dellacasagrande J, Capo C, Raoult D et al (1999) IFN-γ-mediated control of Coxiella burnetii survival in monocytes: the role of cell apoptosis and TNF. J Immunol 162:2259–2265PubMedGoogle Scholar
  16. Dellacasagrande J, Ghigo E, Capo C et al (2000a) Coxiella burnetii survives in monocytes from patients with Q fever endocarditis: involvement of tumor necrosis factor. Infect Immun 68:160–164PubMedCrossRefGoogle Scholar
  17. Dellacasagrande J, Moulin PA, Guilianelli C et al (2000b) Reduced transendothelial migration of monocytes infected by Coxiella burnetii. Infect Immun 68:3784–3786PubMedCrossRefGoogle Scholar
  18. Dellacasagrande J, Ghigo E, Raoult D et al (2002) IFN-γ-induced apoptosis and microbicidal activity in monocytes harboring the intracellular bacterium Coxiella burnetii require membrane TNF and homotypic cell adherence. J Immunol 169:6309–6315PubMedGoogle Scholar
  19. Desnues B, Imbert G, Raoult D et al (2009) Role of specific antibodies in Coxiella burnetii infection of macrophages. Clin Microbiol Infect 15(Suppl 2):161–162PubMedCrossRefGoogle Scholar
  20. Fenollar F, Fournier PE, Carrieri P et al (2001) Risks factors and prevention of Q fever endocarditis. Clin Infect Dis 33:312–316PubMedCrossRefGoogle Scholar
  21. Fournier PE, Marrie TJ, Raoult D (1998) Diagnosis of Q fever. J Clin Microbiol 36:1823–1834PubMedGoogle Scholar
  22. Ghigo E, Capo C, Tung CH et al (2002) Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-γ mediates its restoration and bacterial killing. J Immunol 169:4488–4495PubMedGoogle Scholar
  23. Ghigo E, Honstettre A, Capo C et al (2004) Link between impaired maturation of phagosomes and defective Coxiella burnetii killing in patients with chronic Q fever. J Infect Dis 190:1767–1772PubMedCrossRefGoogle Scholar
  24. Ghigo E, Pretat L, Desnues B et al (2009) Intracellular life of Coxiella burnetii in macrophages. Ann N Y Acad Sci 1166:55–66PubMedCrossRefGoogle Scholar
  25. Harris RJ, Storm PA, Lloyd A et al (2000) Long-term persistence of Coxiella burnetii in the host after primary Q fever. Epidemiol Infect 124:543–549PubMedCrossRefGoogle Scholar
  26. Honstettre A, Imbert G, Ghigo E et al (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187:956–962PubMedCrossRefGoogle Scholar
  27. Honstettre A, Ghigo E, Moynault A et al (2004) Lipopolysaccharide from Coxiella burnetii is involved in bacterial phagocytosis, filamentous actin reorganization, and inflammatory responses through Toll-like receptor 4. J Immunol 172:3695–3703PubMedGoogle Scholar
  28. Houpikian P, Raoult D (2005) Blood culture-negative endocarditis in a reference center: etiologic diagnosis of 348 cases. Medicine (Baltimore) 84:162–173CrossRefGoogle Scholar
  29. Houpikian P, Habib G, Mesana T et al (2002) Changing clinical presentation of Q fever endocarditis. Clin Infect Dis 34:E28–E31PubMedCrossRefGoogle Scholar
  30. Howe D, Mallavia LP (1999) Coxiella burnetii infection increases transferrin receptors on J774A. 1 cells. Infect Immun 67:3236–3241PubMedGoogle Scholar
  31. Humphres RC, Hinrichs DJ (1981) Role of antibody in Coxiella burnetii infection. Infect Immun 31:641–645PubMedGoogle Scholar
  32. Izzo AA, Marmion BP (1993) Variation in interferon-γ responses to Coxiella burnetii antigens with lymphocytes from vaccinated or naturally infected subjects. Clin Exp Immunol 94:507–515PubMedCrossRefGoogle Scholar
  33. Izzo AA, Marmion BP, Worswick DA (1988) Markers of cell-mediated immunity after vaccination with an inactivated, whole-cell Q fever vaccine. J Infect Dis 157:781–789PubMedCrossRefGoogle Scholar
  34. Kishimoto RA, Rozmiarek H, Larson EW (1978) Experimental Q fever infection in congenitally athymic nude mice. Infect Immun 22:69–71PubMedGoogle Scholar
  35. Koster FT, Williams JC, Goodwin JS (1985a) Cellular immunity in Q fever: specific lymphocyte unresponsiveness in Q fever endocarditis. J Infect Dis 152:1283–1289PubMedCrossRefGoogle Scholar
  36. Koster FT, Williams JC, Goodwin JS (1985b) Cellular immunity in Q fever: modulation of responsiveness by a suppressor T cell-monocyte circuit. J Immunol 135:1067–1072PubMedGoogle Scholar
  37. Leone M, Honstettre A, Lepidi H et al (2004) Effect of sex on Coxiella burnetii infection: protective role of 17β-estradiol. J Infect Dis 189:339–345PubMedCrossRefGoogle Scholar
  38. Leone M, Bechah Y, Meghari S et al (2007) Coxiella burnetii infection in C57BL/6 mice aged 1 or 14 months. FEMS Immunol Med Microbiol 50:396–400PubMedCrossRefGoogle Scholar
  39. Lepidi H, Houpikian P, Liang Z et al (2003) Cardiac valves in patients with Q fever endocarditis: microbiological, molecular, and histologic studies. J Infect Dis 187:1097–1106PubMedCrossRefGoogle Scholar
  40. Madariaga MG, Rezai K, Trenholme GM et al (2003) Q fever: a biological weapon in your backyard. Lancet Infect Dis 3:709–721PubMedCrossRefGoogle Scholar
  41. Maltezou HC, Raoult D (2002) Q fever in children. Lancet Infect Dis 2:686–691PubMedCrossRefGoogle Scholar
  42. Marmion BP, Ormsbee RA, Kyrkou M et al (1990) Vaccine prophylaxis of abattoir-associated Q fever: eight years’ experience in Australian abattoirs. Epidemiol Infect 104:275–287PubMedCrossRefGoogle Scholar
  43. Maurin M, Raoult D (1999) Q fever. Clin Microbiol Rev 12:518–553PubMedGoogle Scholar
  44. Meghari S, Honstettre A, Lepidi H et al (2005) TLR2 is necessary to inflammatory response in Coxiella burnetii infection. Ann N Y Acad Sci 1063:161–166PubMedCrossRefGoogle Scholar
  45. Meghari S, Desnues B, Capo C et al (2006) Coxiella burnetii stimulates production of RANTES and MCP-1 by mononuclear cells: modulation by adhesion to endothelial cells and its implication in Q fever. Eur Cytokine Netw 17:253–259PubMedGoogle Scholar
  46. Meghari S, Bechah Y, Capo C et al (2008) Persistent Coxiella burnetii infection in mice overexpressing IL-10: an efficient model for chronic Q fever pathogenesis. PLoS Pathog 4:e23PubMedCrossRefGoogle Scholar
  47. Pellegrin M, Delsol G, Auvergnat JC et al (1980) Granulomatous hepatitis in Q fever. Hum Pathol 11:51–57PubMedCrossRefGoogle Scholar
  48. Penttila IA, Harris RJ, Storm P et al (1998) Cytokine dysregulation in the post-Q-fever fatigue syndrome. QJM 91:549–560PubMedCrossRefGoogle Scholar
  49. Puissegur MP, Botanch C, Duteyrat JL et al (2004) An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol 6:423–433PubMedCrossRefGoogle Scholar
  50. Raoult D (1990) Host factors in the severity of Q fever. Ann N Y Acad Sci 590:33–38PubMedCrossRefGoogle Scholar
  51. Raoult D, Raza A, Marrie TJ (1990) Q fever endocarditis and other forms of chronic Q fever. In: Marrie TJ (ed) Q fever. The disease. CRC Press, Boca Raton, pp 3784–3786Google Scholar
  52. Raoult D, Marrie TJ, Mege JL (2005) Natural history and pathophysiology of Q fever. Lancet Infect Dis 5:219–226PubMedCrossRefGoogle Scholar
  53. Read AJ, Erickson S, Harmsen AG (2010) Role of CD4+ and CD8+ T cells in clearance of primary pulmonary infection with Coxiella burnetii. Infect Immun 78:3019–3026PubMedCrossRefGoogle Scholar
  54. Rolain JM, Mallet MN, Raoult D (2003) Correlation between serum doxycycline concentrations and serologic evolution in patients with Coxiella burnetii endocarditis. J Infect Dis 188:1322–1325PubMedCrossRefGoogle Scholar
  55. Sabatier F, Dignat-George F, Mege JL et al (1997) CD4+ T-cell lymphopenia in Q fever endocarditis. Clin Diagn Lab Immunol 4:89–92PubMedGoogle Scholar
  56. Shannon JG, Heinzen RA (2009) Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res 43:138–148PubMedCrossRefGoogle Scholar
  57. Shannon JG, Howe D, Heinzen RA (2005) Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A 102:8722–8727PubMedCrossRefGoogle Scholar
  58. Srigley JR, Vellend H, Palmer N et al (1985) Q-fever. The liver and bone marrow pathology. Am J Surg Pathol 9:752–758PubMedCrossRefGoogle Scholar
  59. Textoris J, Ban LH, Capo C et al (2010) Sex-related differences in gene expression following Coxiella burnetii infection in mice: potential role of circadian rhythm. PLoS One 5:e12190PubMedCrossRefGoogle Scholar
  60. Tissot-Dupont H, Raoult D, Brouqui P et al (1992) Epidemiologic features and clinical presentation of acute Q fever in hospitalized patients: 323 French cases. Am J Med 93:427–434PubMedCrossRefGoogle Scholar
  61. Voigt JJ, Delsol G, Fabre J (1983) Liver and bone marrow granulomas in Q fever. Gastroenterology 84:887–888PubMedGoogle Scholar
  62. Waag DM, England MJ, Bolt CR et al (2008) Low-dose priming before vaccination with the phase I chloroform-methanol residue vaccine against Q fever enhances humoral and cellular immune responses to Coxiella burnetii. Clin Vaccine Immunol 15:1505–1512PubMedCrossRefGoogle Scholar
  63. Weisburg WG, Dobson ME, Samuel JE et al (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171:4202–4206PubMedGoogle Scholar
  64. Yoshiie K, Matayoshi S, Fujimura T et al (1999) Induced production of nitric oxide and sensitivity of alveolar macrophages derived from mice with different sensitivity to Coxiella burnetii. Acta Virol 43:273–278PubMedGoogle Scholar
  65. Zamboni DS, Rabinovitch M (2003) Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect Immun 71:1225–1233PubMedCrossRefGoogle Scholar
  66. Zamboni DS, Campos MA, Torrecilhas AC et al (2004) Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem 279:54405–54415PubMedCrossRefGoogle Scholar
  67. Zhang G, Russell-Lodrigue KE, Andoh M et al (2007) Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol 179:8372–8380PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, CNRS-IRD UMR 6236, Institut Fédératif de Recherche 48, Faculté de MédecineUniversité de la MéditerranéeMarseilleFrance

Personalised recommendations