Skip to main content

Axenic Growth of Coxiella burnetii

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 984))

Abstract

Early metabolic studies of C. burnetii showed minimal metabolic activity of axenic (host cell-free) organisms in buffers adjusted to neutral pH. However, our understanding of the organism’s physiology was greatly improved upon the discovery that C. burnetii requires an acidic pH for metabolic activation. Indeed, information gained from acid activation studies coupled with contemporary analyses using transcription microarrays, metabolic pathway reconstruction and metabolite typing, led to an axenic culture system that supports robust growth of C. burnetii. While axenic culture of C. burnetii can present some technical challenges, the technique is currently facilitating new lines of investigation and development of genetic tools. Axenic cultivation of C. burnetii should also prove useful in clinical settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akporiaye ET, Rowatt JD, Aragon AA, Baca OG (1983) Lysosomal response of a murine macrophage-like cell line persistently infected with Coxiella burnetii. Infect Immun 40:1155–1162

    PubMed  CAS  Google Scholar 

  • Baca OG, Paretsky D (1983) Q fever and Coxiella burnetii: a model for host-parasite interactions. Microbiol Rev 47:127–149

    PubMed  CAS  Google Scholar 

  • Beare PA, Howe D, Cockrell DC, Omsland A, Hansen B, Heinzen RA (2009a) Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191:1369–1381

    Article  PubMed  CAS  Google Scholar 

  • Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD, Williams KP, Sobral BW, Kupko JJ 3rd, Porcella SF, Samuel JE, Heinzen RA (2009b) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77:642–656

    Article  PubMed  CAS  Google Scholar 

  • Beare PA, Omsland A, Cockrell DC, Howe D, Heinzen RA (2010) Expansion of the Coxiella burnetii genetics tool box using axenic culture. Abstracts of the 24th Meeting of the American Society for Rickettsiolgy, abstracts 94, Stevenson, WA

    Google Scholar 

  • Beron W, Gutierrez MG, Rabinovitch M, Colombo MI (2002) Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect Immun 70:5816–5821

    Article  PubMed  CAS  Google Scholar 

  • Braun RD, Lanzen JL, Snyder SA, Dewhirst MW (2001) Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents. Am J Physiol Heart Circ Physiol 280:H2533–H2544

    PubMed  CAS  Google Scholar 

  • Burton PR, Kordova N, Paretsky D (1971) Electron microscopic studies of the rickettsia Coxiella burnetii: entry, lysosomal response, and fate of rickettsial DNA in L-cells. Can J Microbiol 17:143–150

    Article  PubMed  CAS  Google Scholar 

  • Burton PR, Stueckemann J, Welsh RM, Paretsky D (1978) Some ultrastructural effects of persistent infections by the rickettsia Coxiella burnetii in mouse L cells and green monkey kidney (Vero) cells. Infect Immun 21:556–566

    PubMed  CAS  Google Scholar 

  • Chen SY, Vodkin M, Thompson HA, Williams JC (1990) Isolated Coxiella burnetii synthesizes DNA during acid activation in the absence of host cells. J Gen Microbiol 136:89–96

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Banga S, Mertens K, Weber MM, Gorbaslieva I, Tan Y, Luo ZQ, Samuel JE (2010) Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc Natl Acad Sci U S A 107:21755–21760

    Article  PubMed  CAS  Google Scholar 

  • Cockrell DC, Beare PA, Fischer ER, Howe D, Heinzen RA (2008) A method for purifying obligate intracellular Coxiella burnetii that employs digitonin lysis of host cells. J Microbiol Methods 72:321–325

    Article  PubMed  CAS  Google Scholar 

  • Coleman SA, Fischer ER, Howe D, Mead DJ, Heinzen RA (2004) Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol 186:7344–7352

    Article  PubMed  CAS  Google Scholar 

  • Cox HR (1938) A filter-passing infectious agent isolated from ticks. III. Description of organism and cultivation experiments. Public Health Report 53:2270–2276

    Google Scholar 

  • Dalebroux ZD, Edwards RL, Swanson MS (2009) SpoT governs Legionella pneumophila differentiation in host macrophages. Mol Microbiol 71:640–658

    Article  PubMed  CAS  Google Scholar 

  • Edwards RL, Dalebroux ZD, Swanson MS (2009) Legionella pneumophila couples fatty acid flux to microbial differentiation and virulence. Mol Microbiol 71:1190–1204

    Article  PubMed  Google Scholar 

  • Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Porcella SF, Hackstadt T (2008) Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect Immun 76:542–550

    Article  PubMed  CAS  Google Scholar 

  • Ewann F, Hoffman PS (2006) Cysteine metabolism in Legionella pneumophila: characterization of an L-cystine-utilizing mutant. Appl Environ Microbiol 72:3993–4000

    Article  PubMed  CAS  Google Scholar 

  • Gilsdorf A, Kroh C, Grimm S, Jensen E, Wagner-Wiening C, Alpers K (2008) Large Q fever outbreak due to sheep farming near residential areas, Germany, 2005. Epidemiol Infect 136:1084–1087

    Article  PubMed  CAS  Google Scholar 

  • Hackstadt T (1983) Estimation of the cytoplasmic pH of Coxiella burnetii and effect of substrate oxidation on proton motive force. J Bacteriol 154:591–597

    PubMed  CAS  Google Scholar 

  • Hackstadt T, Williams JC (1981a) Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A 78:3240–3244

    Article  PubMed  CAS  Google Scholar 

  • Hackstadt T, Williams JC (1981b) Stability of the adenosine 5′-triphosphate pool in Coxiella burnetii: influence of pH and substrate. J Bacteriol 148:419–425

    PubMed  CAS  Google Scholar 

  • Hackstadt T, Williams JC (1983) pH dependence of the Coxiella burnetii glutamate transport system. J Bacteriol 154:598–603

    PubMed  CAS  Google Scholar 

  • Harth G, Clemens DL, Horwitz MA (1994) Glutamine synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. Proc Natl Acad Sci U S A 91:9342–9346

    Article  PubMed  CAS  Google Scholar 

  • Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64:796–809

    PubMed  CAS  Google Scholar 

  • Howe D, Shannon JG, Winfree S, Dorward DW, Heinzen RA (2010) Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect Immun 78:3465–3474

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Sosnovsky G, Swartz HM (1992) Simultaneous measurements of the intra- and extra-cellular oxygen concentration in viable cells. Biochim Biophys Acta 1112:161–166

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi A, Suzuki Y, Ono S, Sato H, Sato Y (1983) Heptakis(2,6-O-dimethyl)beta-cyclodextrin: a novel growth stimulant for Bordetella pertussis phase I. J Clin Microbiol 17:781–786

    PubMed  CAS  Google Scholar 

  • Kashiwagi K, Miyamoto S, Suzuki F, Kobayashi H, Igarashi K (1992) Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci U S A 89:4529–4533

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Shen J, Chang TY, Chang CC, Fung PC, Grinberg O, Demidenko E, Swartz H (2003) Plasma membrane cholesterol: a possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism. Biochemistry 42:23–29

    Article  PubMed  CAS  Google Scholar 

  • Marchini A, D’apolito M, Massari P, Atzeni M, Copass M, Olivieri R (1995) Cyclodextrins for growth of Helicobacter pylori and production of vacuolating cytotoxin. Arch Microbiol 164:290–293

    Article  PubMed  CAS  Google Scholar 

  • Maurin M, Benoliel AM, Bongrand P, Raoult D (1992) Phagolysosomes of Coxiella burnetii-infected cell lines maintain an acidic pH during persistent infection. Infect Immun 60:5013–5016

    PubMed  CAS  Google Scholar 

  • Mcleod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, Fox GE, Mcneill TZ, Jiang H, Muzny D, Jacob LS, Hawes AC, Sodergren E, Gill R, Hume J, Morgan M, Fan G, Amin AG, Gibbs RA, Hong C, Yu XJ, Walker DH, Weinstock GM (2004) Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 186:5842–5855

    Article  PubMed  CAS  Google Scholar 

  • Omsland A, Cockrell DC, Fischer ER, Heinzen RA (2008) Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J Bacteriol 190:3203–3212

    Article  PubMed  CAS  Google Scholar 

  • Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE, Porcella SF, Heinzen RA (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A 106:4430–4434

    Article  PubMed  CAS  Google Scholar 

  • Omsland A, Beare PA, Hill J, Cockrell DC, Howe D, Hansen B, Samuel JE, Heinzen RA (2011) Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 77:3720–3725

    Article  PubMed  CAS  Google Scholar 

  • Paretsky D, Consigli RA, Downs CM (1962) Studies on the physiology of rickettsiae. III. Glucose phosphorylation and hexokinase activity in Coxiella burnetii. J Bacteriol 83:538–543

    PubMed  CAS  Google Scholar 

  • Sauer JD, Bachman MA, Swanson MS (2005) The phagosomal transporter A couples threonine acquisition to differentiation and replication of Legionella pneumophila in macrophages. Proc Natl Acad Sci U S A 102:9924–9929

    Article  PubMed  CAS  Google Scholar 

  • Schimmer B, Dijkstra F, Vellema P, Schneeberger PM, Hackert V, Ter Schegget R, Wijkmans C, Van Duynhoven Y, Van Der Hoek W (2009) Sustained intensive transmission of Q fever in the south of the Netherlands, 2009. Euro Surveill 14:19210

    PubMed  Google Scholar 

  • Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704

    Article  PubMed  CAS  Google Scholar 

  • Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC, Ward NL, Tettelin H, Davidsen TM, Beanan MJ, Deboy RT, Daugherty SC, Brinkac LM, Madupu R, Dodson RJ, Khouri HM, Lee KH, Carty HA, Scanlan D, Heinzen RA, Thompson HA, Samuel JE, Fraser CM, Heidelberg JF (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100:5455–5460

    Article  PubMed  CAS  Google Scholar 

  • Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q, Koonin EV, Davis RW (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754–759

    Article  PubMed  CAS  Google Scholar 

  • Teixeira De Mattos MJ, Neijssel OM (1997) Bioenergetic consequences of microbial adaptation to low-nutrient environments. J Biotechnol 59:117–126

    Article  PubMed  CAS  Google Scholar 

  • Tesh MJ, Morse SA, Miller RD (1983) Intermediary metabolism in Legionella pneumophila: utilization of amino acids and other compounds as energy sources. J Bacteriol 154:1104–1109

    PubMed  CAS  Google Scholar 

  • Voth DE, Beare PA, Howe D, Sharma UM, Samoilis G, Cockrell DC, Omsland A, Heinzen RA (2011) The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol 193:1493–1503

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Peacock MG, Mccaul TF (1981) Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun 32:840–851

    PubMed  CAS  Google Scholar 

  • Zuerner RL, Thompson HA (1983) Protein synthesis by intact Coxiella burnetii cells. J Bacteriol 156:186–191

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank Robert A. Heinzen for critical review of this manuscript, and Anita Mora and Austin Athman for graphic illustrations. This work was funded by the Intramural Research Program of the National Institutes of Health, National Institute of Allergy and Infectious Diseases

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Omsland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Omsland, A. (2012). Axenic Growth of Coxiella burnetii . In: Toman, R., Heinzen, R., Samuel, J., Mege, JL. (eds) Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium. Advances in Experimental Medicine and Biology, vol 984. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4315-1_11

Download citation

Publish with us

Policies and ethics