Geometric and Developmental Perspectives on the Evolution of the Skull and Internal Carotid Circulation in Turtles

Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Internal carotid circulation is arguably one of the most intensively analyzed morphological characters in turtle systematics and, thus, it is critical for understanding turtle phylogeny. I used landmark-based geometric morphometrics to facilitate a quantitative analysis of variation in turtle skull shape and osteological correlates of the internal carotid circulation. The analysis indicates that the position of the foramen posterior canalis carotici interni differs among eucryptodires, paracryptodires, and pleurodires, but remains relatively stable within these lineages. This supports the hypothesis that the position of the foramen posterior canalis carotici interni is a reliable character for identifying higher turtle taxa. Results from the geometric morphometric analysis are consistent with two of the three traits recently proposed to affect patterns of internal carotid circulation. However, these three traits do not fully explain six different patterns of internal carotid circulation in turtles. I identify the association between the internal carotid artery and the palatine branch of the facial nerve (CN VII) as a developmental constraint in turtles. Using this association as a reference point, embryological observations reported in the literature suggest morphogenetic processes that may govern different patterns of internal carotid circulation. When mapped on a phylogenetic tree, some characters transform more than once independently. The evolution of internal carotid circulation in turtles may have been even more complex than reconstructed in this paper, because of uncertain relationships among basal eucryptodires and because of a mosaic of character states in that critical part of the tree.

Keywords

Cranial arteries Cranial foramina Cranial nerves Cryptodira Eucryptodira  Pleurodira  

Notes

Acknowledgments

A project like this would not have been possible without the precise, consistent, and well-illustrated descriptive works by Eugene Gaffney (American Museum of Natural History) throughout his career. Ren Hirayama (Waseda University) encouraged me in the after-hours party at an annual meeting of the Society of Vertebrate Paleontology in 2008 to do a turtle project as a reprieve from my immersion in dinosaurs, which eventually led to this paper. Heather Jamniczky (University of Calgary) sent her publications and Lara Shychoski (University of Alberta) lent her copy of Zelditch et al. (2004). Don Brinkman and Dennis Braman (Royal Tyrrell Museum of Palaeontology) provided logistical support when the preliminary version of this project was presented in the Gaffney Turtle Symposium. I thank the editors for the additional time they provided to put my thoughts together for this project. Jim Gardner (Royal Tyrrell Museum of Palaeontology) handled the manuscript. Reviews by Larry Powell (University of Calgary), Juliana Sterli (Museo Paleontológico Egidio Feruglio), and an anonymous person substantially improved the paper. Rich Palmer and Richard Fox (both University of Alberta) carefully critiqued and edited earlier versions of the manuscript. I thank Kesia Andressen for her medical support. Financial assistance came from the Alberta Ingenuity Fund and from Junichi and Kanae Miyashita.

References

  1. Albrecht, P. W. (1967). The cranial arteries and cranial arterial foramina of the turtle genera Chrysemys, Sternotherus, and Trionyx: A comparative study with analysis of possible evolutionary implications. Tulane Studies of Zoology, 14, 81–99.Google Scholar
  2. Albrecht, P. W. (1976). The cranial arteries of turtles and their evolutionary significance. Journal of Morphology, 149, 159–182.CrossRefGoogle Scholar
  3. Baur, G. (1896). Der Schädel einer neuen grossen Schildkröte (Adelochelys) aus dem. Zoologischen Museum in Miinchen, 12, 314–319.Google Scholar
  4. Bellairs, A.d’ A., & Kamal, A. M. (1981). The chondrocranium and the development of the skull in recent reptiles. In C. Gans & T. S. Parsons (Eds.), Biology of the Reptilia (Vol. 11, pp. 1–263). New York: Academic Press.Google Scholar
  5. Bever, G. S. (2008). Comparative growth in the postnatal skull of the extant North American turtle Pseudemys texana (Testudinoidea: Emydidae). Acta Zoologica, 89, 107–131.CrossRefGoogle Scholar
  6. Bever, G. S. (2009a). The postnatal skull of the extant North American turtle Pseudemys texana (Cryptodira: Emydidae), with comments on the study of discrete intraspecific variation. Journal of Morphology, 270, 97–128.CrossRefGoogle Scholar
  7. Bever, G. S. (2009b). Postnatal ontogeny of the skull in the extant North American turtle Sternotherus odoratus (Cryptodira: Kinosternidae). Bulletin of the American Museum of Natural History, 330, 1–97.CrossRefGoogle Scholar
  8. Bona, P., & Alcade, L. (2009). Chondrocranium and skeletal development of Phrynops hilarii (Pleurodira: Chelidae). Acta Zoologica, 90, 301–325.CrossRefGoogle Scholar
  9. Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.Google Scholar
  10. Brinkman, D. B. (2003). Anatomy and systematics of Plesiobaena antique (Testudines: Baenidae) from the mid-Campanian Judith River Group of Alberta, Canada. Journal of Vertebrate Paleontology, 23, 146–155.CrossRefGoogle Scholar
  11. Brinkman, D. B., & Nicholls, E. L. (1991). Anatomy and relationships of the turtle Boremys pulchra (Testudines: Baenidae). Journal of Vertebrate Paleontology, 11, 302–315.CrossRefGoogle Scholar
  12. Brinkman, D. B., & Nicholls, E. L. (1993). The skull of Neurankylus eximius (Testudines: Baenidae) and a reinterpretation of the relationships of this taxon. Journal of Vertebrate Paleontology, 13, 273–281.CrossRefGoogle Scholar
  13. Brinkman, D. B., & Wu, X.-C. (1999). The skull of Ordosemys, an Early Cretaceous turtle from Inner Mongolia, People’s Republic of China, and the interrelationships of Eucryptodira (Chelonia: Cryptodira). Paludicola, 2, 134–147.Google Scholar
  14. Brinkman, D. B., Eberth, D. A., Xu, X., Clark, J. M., & Wu, X.-C. (2012). Turtles from the Jurassic Shishugou Formation of the Junggar Basin, People’s Republic of China, with comments on the basicranial region of basal eucryptodires. In D. B. Brinkman, P. A. Holroyd & J. D. Gardner (Eds.), Morphology and evolution of turtles: Origin and early diversification (pp. XXX–XXX). Dordrecht: Springer.Google Scholar
  15. Carr, A.F. (1952). Handbook of turtles. The Turtles of the United States, Canada, and Baja California. Ithaca: Cornell University Press.Google Scholar
  16. Chapman, R. E. (1990). Conventional Procrustes methods. In F. J. Rohlf & F. L. Bookstein (Eds.), Proceedings of the Michigan Morphometrics Workshop (pp. 251–267). Ann Arbor: University of Michigan Museum of Zoology.Google Scholar
  17. Erickson, B. R. (1973). A new chelydrid turtle Protochelydra zangerli from the late Paleocene of North America. Scientific Publication of the Science Museum of Minnesota, 2, 1–16.Google Scholar
  18. Evans, J., & Kemp, T. S. (1975). The cranial morphology of a new Lower Cretaceous turtle from southern England. Palaeontology, 18, 25–40.Google Scholar
  19. Evans, J., & Kemp, T. S. (1976). A new turtle skull from the Purbeckian of England and a note on the early dichotomies of cryptodire turtles. Palaeontology, 19, 317–324.Google Scholar
  20. Fujita, M. K., Engstrom, T. N., Starkey, D. E., & Shaffer, H. B. (2004). Turtle phylogeny: Insights from a novel nuclear intron. Molecular Phylogenetics and Evolution, 31, 1031–1040.CrossRefGoogle Scholar
  21. Gaffney, E. S. (1972a). An illustrated glossary of turtle skull nomenclature. American Museum Novitates, 2486, 1–33.Google Scholar
  22. Gaffney, E. S. (1972b). The systematics of the North American family Baenidae (Reptilia, Cryptodira). Bulletin of the American Museum of Natural History, 147, 241–320.Google Scholar
  23. Gaffney, E. S. (1975a). A phylogeny and classification of the higher categories of turtles. Bulletin of the American Museum of Natural History, 155, 391–436.Google Scholar
  24. Gaffney, E. S. (1975b). Phylogeny of the chelydrid turtles: A study of shared derived characters in the skull. Fieldiana Geology, 33, 157–178.Google Scholar
  25. Gaffney, E. S. (1975c). A taxonomic revision of the Jurassic turtles Portlandemys and Plesiochelys. American Museum Novitates, 2574, 1–19.Google Scholar
  26. Gaffney, E. S. (1975d). Solnhofia parsonsi, a new cryptodire turtle from the Late Jurassic of Europe. American Museum Novitates, 2576, 1–25.Google Scholar
  27. Gaffney, E. S. (1977). The side-necked turtle family Chelidae: A theory of relationships using shared derived characters. American Museum Novitates, 2620, 1–28.Google Scholar
  28. Gaffney, E. S. (1979a). The Jurassic turtles of North America. Bulletin of the American Museum of Natural History, 162, 91–136.Google Scholar
  29. Gaffney, E. S. (1979b). Comparative cranial morphology of recent and fossil turtles. Bulletin of the American Museum of Natural History, 164, 1–376.Google Scholar
  30. Gaffney, E. S. (1983). The cranial morphology of the extinct horned turtle, Meiolania platyceps, from the Pleistocene of Lord Howe Island, Australia. Bulletin of the American Museum of Natural History, 175, 361–480.Google Scholar
  31. Gaffney, E. S. (1984). Historical analyses of theories of chelonian relationship. Systematic Zoology, 33, 283–301.CrossRefGoogle Scholar
  32. Gaffney, E. S. (1990). The comparative osteology of the Triassic turtle Proganochelys. Bulletin of the American Museum of Natural History, 194, 1–263.Google Scholar
  33. Gaffney, E. S. (1996). The postcranial morphology of Meiolania platyceps and a review of the Meiolanidae. Bulletin of the American Museum of Natural History, 229, 1–166.Google Scholar
  34. Gaffney, E. S., & Jenkins, F. A. (2010). The cranial morphology of Kayentachelys, an Early Jurassic cryptodire, and the early history of turtles. Acta Zoologica, 91, 335–368.Google Scholar
  35. Gaffney, E. S., & Meeker, L. J. (1983). Skull morphology of the oldest turtles: A preliminary description of Proganochelys quenstedti. Journal of Vertebrate Paleontology, 3, 25–28.CrossRefGoogle Scholar
  36. Gaffney, E. S., & Meylan, P. A. (1988). A phylogeny of turtles. In M. J. Benton (Ed.), The Phylogeny and Classification of the Tetrapods (Vol. 1, pp. 157–219)., Amphibians, Reptiles, Birds Oxford: Clarendon Press.Google Scholar
  37. Gaffney, E. S., & Meylan, P. A. (1992). The Transylvanian turtle, Kallokibotion, a primitive cryptodire of Cretaceous age. American Museum Novitates, 3040, 1–37.Google Scholar
  38. Gaffney, E. S., & Tong, H. (2003). Phosphatochelys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Paleocene of Morrocco. Bulletin of the American Museum of Natural History, 279, 644–659.CrossRefGoogle Scholar
  39. Gaffney, E. S., & Wood, R. C. (2002). Bairdemys, a new side-necked turtle (Pelomedusoides: Podocnemididae) from the Miocene of the Caribbean. American Museum Novitates, 3359, 1–28.CrossRefGoogle Scholar
  40. Gaffney, E. S., & Ye, X. (1992). Dracochelys, a new cryptodire turtle from the Early Cretaceous of China. American Museum Novitates, 3048, 1–13.Google Scholar
  41. Gaffney, E. S., Meylan, P. A., & Wyss, A. R. (1991). A computer assisted analysis of the relationships of the higher categories of turtles. Cladistics, 7, 313–335.CrossRefGoogle Scholar
  42. Gaffney, E. S., Campos, D. D. A., & Hirayama, R. (2001a). Cearachelys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Early Cretaceous of Brazil. American Museum Novitates, 3319, 1–20.CrossRefGoogle Scholar
  43. Gaffney, E. S., Moody, R. T. J., & Walker, C. A. (2001b). Azabbaremys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Paleocene of Mali. American Museum Novitates, 3320, 1–16.CrossRefGoogle Scholar
  44. Gaffney, E. S., Chatterjee, S., & Dudra, D. J. (2001c). Kurmademys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Late Cretaceous of India. American Museum Novitates, 3321, 1–16.CrossRefGoogle Scholar
  45. Gaffney, E. S., Tong, H., & Meylan, P. A. (2006). Evolution of the side-necked turtles: The families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the American Museum of Natural History, 300, 1–698.CrossRefGoogle Scholar
  46. Gaffney, E. S., Hutchison, J. H., Jenkins, F. A., & Meeker, L. J. (1987). Modern turtle origins: The oldest known cryptodire. Science, 237, 289–291.CrossRefGoogle Scholar
  47. Gaffney, E. S., Sahni, A., Schleich, H., Singh, S. D., & Srivastava, R. (2003). Sankuchemys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Late Cretaceous of India. American Museum Novitates, 3405, 1–10.CrossRefGoogle Scholar
  48. Gaffney, E. S., Roberts, E., Sissoko, F., Bouare, M. L., Tapanila, L., & O’Leary, M. A. (2007a). Acleistochelys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Paleocene of Mali. American Museum Novitates, 3549, 1–24.CrossRefGoogle Scholar
  49. Gaffney, E. S., Rich, T. H., Vickers-Rich, P., Constantine, A., Vacca, P., & Kool, L. (2007b). Chubutemys, a new eucryptodiran turtle from the Early Cretaceous of Argentina, and the relationship of Meiolaniidae. American Museum Novitates, 3599, 1–35.CrossRefGoogle Scholar
  50. Gardner, J. D., Russell, A. P., & Brinkman, D. B. (1995). Systematics and taxonomy of soft-shelled turtles (Family Trionychidae) from the Judith River Group (mid-Campanian) of North America. Canadian Journal of Earth Sciences, 32, 631–643.CrossRefGoogle Scholar
  51. Goodrich, E. S. (1930). Studies on the Structure and Development of Vertebrates. London: Constable and Company.CrossRefGoogle Scholar
  52. Gray, J. E. (1855). Catalogue of shield reptiles in the collections of the British Museum. Part I. Testudinata (Tortoises). London: British Museum.Google Scholar
  53. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2010). PAST version 3.2. Retrieved May 1, 2010 from http://www.nhm.uio.no/norges/past/download.html.
  54. Hay, O. P. (1908). The fossil turtles of North America. Carnegie Institute Washington, Publication, 75, 1–568.Google Scholar
  55. Hirayama, R., Brinkman, D. B., & Danilov, I. G. (2000). Distribution and biogeography of non-marine Cretaceous turtles. Russian Journal of Herpetology, 7, 181–198.Google Scholar
  56. Jamniczky, H. A. (2008). Turtle carotid circulation: A character analysis case study. Biological Journal of the Linnean Society, 93, 239–256.CrossRefGoogle Scholar
  57. Jamniczky, H. A., & Russell, A. P. (2004). Cranial arterial foramen diameter in turtles: Quantitative assessment of size-independent phylogenetic signal. Animal Biology, 54, 417–436.CrossRefGoogle Scholar
  58. Jamniczky, H. A., & Russell, A. P. (2007). Re-appraisal of patterns of turtle carotid circulation: Evidence from osteological correlates and soft tissues. Journal of Morphology, 268, 571–587.CrossRefGoogle Scholar
  59. Jamniczky, H. A., Brinkman, D. B., & Russell, A. P. (2006). Phylogenetic implications of turtle cranial circulation: A review. Russian Journal of Herpetology, 13 suppl. (Fossil Turtle Research, 1), 84–92.Google Scholar
  60. Jaril, N.-E., de Broin, F.d. L., Bardet, N., Vacant, R., Bouya, B., Amaghzaz, M., et al. (2009). Euclastes acutirostris, a new species of littoral turtle (Cryptodira, Cheloniidae) from the Paleocene phosphates of Morocco (Oulad Abdoun Basin, Danian-Thanetian). Comptus Rendus Palevol, 8, 447–459.CrossRefGoogle Scholar
  61. Joyce, W. G. (2007). Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 48, 3–102.CrossRefGoogle Scholar
  62. Krenz, J. G., Naylor, G. J. P., Shaffer, H. B., & Janzen, F. J. (2005). Molecular phylogenetics and evolution of turtles. Molecular Phylogenetics and Evolution, 37, 178–191.CrossRefGoogle Scholar
  63. Kuratani, S. (1987). The development of the orbital region of Caretta caretta (Chelonia: Reptilia). Journal of Anatomy, 154, 187–200.Google Scholar
  64. Loveridge, A., & Williams, E. E. (1957). Revision of the African tortoises and turtles of the suborder Cryptodira. Bulletin of the Museum of Comparative Zoology, 115, 163–557.Google Scholar
  65. Lyson, T. R., & Joyce, W. G. (2009a). A new species of Palatobaena (Testudines: Baenidae) and a maximum parsimony and Bayesian phylogenetic analysis of Baenidae. Journal of Paleontology, 83, 457–470.CrossRefGoogle Scholar
  66. Lyson, T. R., & Joyce, W. G. (2009b). A revision of Plesiobaena (Testudines: Baenidae) and an assessment of baenid ecology across the K/T boundary. Journal of Paleontology, 83, 833–853.CrossRefGoogle Scholar
  67. Mateus, O., Jacobs, L., Polcyn, M., Schulp, A. S., Vineyard, D., & Buta Neto, A. (2009). The oldest African eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica, 54, 581–588.CrossRefGoogle Scholar
  68. McDowell, S. B. (1961). On the major arterial canals in the ear-region of testudinoid turtles and the classification of the Testudinoidea. Bulletin of the Museum of Comparative Zoology, 125, 23–39.Google Scholar
  69. McDowell, S. B. (1964). Partition of the genus Clemmys and related problems in the taxonomy of the aquatic Testudinidae. Proceedings of the Zoological Society of London, 143, 239–279.CrossRefGoogle Scholar
  70. Meylan, P. A. (1996). Skeletal morphology and relationships of the Early Cretaceous side-necked turtle, Araripemys barretoi (Testudines: Pelomedusoides: Araripemydidae) from the Santana Formation of Brazil. Journal of Vertebrate Paleontology, 16, 20–33.CrossRefGoogle Scholar
  71. Meylan, P. A., & Gaffney, E. S. (1989). The skeletal morphology of the Cretaceous cryptodire turtle, Adocus, and the relationships of the Tryonychoidea. American Museum Novitates, 2941, 1–60.Google Scholar
  72. Meylan, P. A., Gaffney, E. S., & Campos, D.d. A. (2009). Caninemys, a new side-necked turtle (Pelomedusoides: Podocnemididae) from the Miocene of Brazil. American Museum Novitates, 3639, 1–26.CrossRefGoogle Scholar
  73. Near, T. J., Meylan, P. A., & Shaffer, H. B. (2005). Assessing concordance of fossil calibration points in molecular clock studies: An example using turtles. The American Naturalist, 165, 137–146.CrossRefGoogle Scholar
  74. Parham, J. F., & Hutchison, J. H. (2003). A new eucryptodiran turtle from the Late Cretaceous of North America (Dinosaur Provincial Park, Alberta, Canada). Journal of Vertebrate Paleontology, 23, 783–798.CrossRefGoogle Scholar
  75. Rieppel, O. (1980). The skull of the Upper Jurassic cryptodire turtle Thalassemys, with a reconsideration of the chelonian braincase. Palaeontographica A, 171, 105–140.Google Scholar
  76. Rieppel, O. (1987). The development of the trigeminal jaw adductor musculature and associated skull elements in the lizard Podarcis sicula. Journal of Zoology, 212, 131–150.CrossRefGoogle Scholar
  77. Rieppel, O. (1988). The development of the trigeminal jaw adductor musculature in the grass snake Natrix natrix. Journal of Zoology, 216, 743–770.CrossRefGoogle Scholar
  78. Rieppel, O. (1990). The structure and development of the jaw adductor musculature in the turtle Chelydra serpentina. Zoological Journal of the Linnean Society, 98, 27–62.CrossRefGoogle Scholar
  79. Rieppel, O. (1993). Studies on skeleton formation in reptiles: Patterns of ossification in the skeleton of Chelydra serpentina (Reptilia: Testudines). Journal of Zoology, 231, 487–509.CrossRefGoogle Scholar
  80. Rohlf, F. J. (1990). Rotational fit (Procrustes) methods. In F. J. Rohlf & F. L. Bookstein (Eds.), Proceedings of the Michigan Morphometrics Workshop (pp. 227–236). Ann Arbor: University of Michigan Museum of Zoology.Google Scholar
  81. Rohlf, F. J. (2003). TpsSmall version 1.20. Retrieved July 16, 2010 from http://life.bio.sunysb.edu/morph.
  82. Rohlf, F.J. (2010). TpsDig version 2.16. Retrieved July 16, 2010 from http://life.bio.sunysb.edu/morph.
  83. Sánchez-Villagra, M. R., Müller, H., Sheil, C. A., Scheyer, T. M., Nagashima, H., & Kuratani, S. (2009). Skeletal development in the Chinese soft-shelled turtle Pelodiscus sinensis (Testudines: Trionychidae). Journal of Morphology, 270, 1381–1399.CrossRefGoogle Scholar
  84. Shaffer, H. B., Meylan, P., & McKnight, M. L. (1997). Tests of turtle phylogeny: Molecular, morphological, and paleontological approaches. Systematic Biology, 46, 235–268.CrossRefGoogle Scholar
  85. Sheets, H. D. (2001). CoordGen version 6 h. Retrieved May 1, 2010 from http://www.canisius.edu/~sheets/morphsoft.html.
  86. Sheets, H. D. (2004). CVAGen version 6 l. Retrieved May 1, 2010 from http://www.canisius.edu/~sheets/morphsoft.html.
  87. Sheets, H. D. (2005). TwoGroup version 6 h. Retrieved May 1, 2010 from http://www.canisius.edu/~sheets/morphsoft.html.
  88. Sheil, C. A. (2003). Osteology and skeletal development of Apalone spinifera (Reptilia: Testudines: Trionychidae). Journal of Morphology, 256, 42–78.CrossRefGoogle Scholar
  89. Sheil, C. A. (2005). Skeletal development of Macrochelys temminckii (Reptilia: Testudines: Chelydidae). Journal of Morphology, 263, 71–106.CrossRefGoogle Scholar
  90. Sheil, C. A., & Greenbaum, E. (2005). Reconsideration of skeletal development of Chelydra serpentina Reptilia: Testudinata: Chelydridae): Evidence for intraspecific variation. Journal of Zoology, 265, 235–267.CrossRefGoogle Scholar
  91. Sterli, J., & de la Fuente, M. S. (2010). Anatomy of Condorchelys antique Sterli, 2008, and the origin of the modern jaw closure mechanism in turtles. Journal of Vertebrate Paleontology, 30, 351–366.CrossRefGoogle Scholar
  92. Sterli, J., Müller, J., Anquetin, J., & Hilger, A. (2010). The parabasisphenoid complex in Mesozoic turtles and the evolution of the testudinate basicranium. Canadian Journal of Earth Sciences, 47, 1337–1346.CrossRefGoogle Scholar
  93. Sukhanov, V. B. (2000). Mesozoic turtles of Middle and Central Asia. In M. J. Benton, M. A. Shishkin, D. M. Unwin & E. N. Kurochkin (Eds.), The Age of Dinosaurs in Russia and Mongolia (pp. 309–367). Cambridge: Cambrdige University Press.Google Scholar
  94. Suzuki, S., & Tsogtbaatar, C. (2010). A catalogue of Mongolochelys collected by the HMNS-MPC Joint Paleontological Expedition. Hayashibara Museum of Natural History Research Bulletin, 3, 119–131.Google Scholar
  95. Walker, J. A. (2000). Ability of geometric morphometric methods to estimate a known covariance matrix. Systematic Biology, 49, 115–150.CrossRefGoogle Scholar
  96. Williams, E. E. (1952). A staurotypine skull from the Oligocene of South Dakota (Testudinata: Chelydridae). Breviora, 2, 1–16.Google Scholar
  97. Wood, R. C. (1970). A review of the fossil Pelomedusidae (Testudines: Pleurodira) of Asia. Breviora, 357, 1–24.Google Scholar
  98. Yntema, C. L. (1968). A series of stages in the embryonic development of Chelydra serpentina. Journal of Morphology, 125, 219–252.CrossRefGoogle Scholar
  99. Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric Morphometrics for biologists: A primer. London: Elsevier Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations