Morphology and Evolution of Turtles pp 51-61 | Cite as
The Evolution of the Turtle Shell
Abstract
This chapter traces the history of the debate on the evolution of the turtle shell, and carries the analysis of the origin of the turtle carapace forward from two complementary perspectives, viz. paleontology and developmental biology. Two alternative approaches to morphological analysis—the transformationist and the emergentist—are identified. The transformationist approach seeks to understand morphological evolution as a consequence of the gradual, step-wise transformation of the adult phenotype. The emergentist approach allows for ontogenetic deviation to result in the development of evolutionary novelties. The discovery of the so far oldest and most primitive turtle known, from the early Late Triassic of southwestern China, provides the basis for a synthesis of paleontological and developmental data in the understanding of the evolutionary origin of the turtle shell.
Keywords
Carapace Dermal bone Dermochelys Membrane bone OdontochelysNotes
Acknowledgments
I thank Anne Burke, Robert L. Carroll, Hiroshi Nagashima, Torsten M. Scheyer, Michael A. Taylor, and Matthew K. Vickaryous, who all offered helpful comments on an earlier draft of this paper.
References
- Baur, G. (1886). Osteologische Notizen über Reptilien. Zoologischer Anzeiger, 9, 685–690.Google Scholar
- Baur, G. (1887). On the morphogeny of the carapace of the Testudinata. The American Naturalist, 21, 89.Google Scholar
- Baur, G. (1888). Unusual dermal ossifications. Science, 11, 144–145.CrossRefGoogle Scholar
- Baur, G. (1889). Die systematische Stellung von Dermochelys Blainv. Biologisches Zentralblatt, 9, 149–153.Google Scholar
- Burke, A. C. (1989a). Critical feature in chelonian development: The ontogeny and phylogeny of a unique tetrapod bauplan. Ph.D Dissertation, Harvard University, Cambridge, MA.Google Scholar
- Burke, A. C. (1989b). Development of the turtle carapace: Implications for the evolution of a novel bauplan. Journal of Morphology, 199, 363–378.CrossRefGoogle Scholar
- Burke, A. C. (1991). The development and evolution of the turtle body plan: Inferring intrinsic aspects of the evolutionary process from experimental embryology. American Zoologist, 31, 616–627.Google Scholar
- Burke, A. C. (2009). Turtles …… again. Evolution & Development, 11, 622–624.CrossRefGoogle Scholar
- Carroll, R. L. (1988). Vertebrate Paleontology and Evolution. New York: W. H. Freeman.Google Scholar
- Carus, K. G. (1834). Lehrbuch der Vergleichenden Zootomie. 2. Aufl., Bd. I. . Leipzig: Ernst Fleischer.Google Scholar
- Case, E. C. (1898). Toxochelys. University of Kansas Geological Survey, 4, 370–385.Google Scholar
- Cebra-Thomas, J. A., Betters, E., Yin, M., Plafkin, C., McDow, K., & Gilbert, S. F. (2007). Evidence that a late-emerging population of trunk neural crest cells forms the plastron in the turtle Trachemys scriptascripta. Evolution & Development, 9, 267–277.CrossRefGoogle Scholar
- Cebra-Thomas, J. A., Tan, F., Sistla, S., Estes, E., Bender, G., Kim, C., Riccio, P., & Gilbert, S. F. (2005). How the turtle forms its shell: A paracrine hypothesis of carapace formation. Journal of Experimental Zoology (Mol Dev Evol), 304B, 558–569.CrossRefGoogle Scholar
- Clark, K., Bender, G., Murray, B. P., Panfilio, K., Cook, S., Davis, R., Murnen, K., Tuan, R. S., & Gilbert, S. F. (2001). Evidence for the neural crest origin of turtle plastron bones. Genesis, 3, 111–117.CrossRefGoogle Scholar
- Cope, E. D. (1871). On the homologies of some of the cranial bones of the Reptilia, and the systematic arrangement of the class. In Proceedings of the American Association for the Advancement of Science, (pp. 194–247).Google Scholar
- Cuvier, G. (1799). Leçons d’Anatomie Comparée, Vol. I. Paris: Boudouin.Google Scholar
- Cuvier, G. (1812). Recherches sur les Ossements Fossiles de Quadrupèdes, Vol. IV. Paris: Deterville.Google Scholar
- Darwin, Ch. (1859). On the Origin of Species. London: John Murray.Google Scholar
- Dollo, L. (1886). Première note sur les chéloniens du Bruxellien (Eocène moyen) de la Belgique. Bulletin du Musée Royale d’Histoire Naturelle de la Belgique, 4, 75–96.Google Scholar
- Gaffney, E. S. (1990). The comparative osteology of the Triassic turtle Proganochelys. Bulletin of the American Museum of Natural History, 194, 1–263.Google Scholar
- Gauthier, J. A. (1994). The diversification of amniotes. In D. Prothero, & R. M. Schoch (Eds.), Major Features of Vertebrate Evolution (pp. 129–159). Knoxville: Paleontological Society.Google Scholar
- Geoffroy, S-H. E. (1818). Philosophie Anatomique. Des Organes Respiratoires sous le Rapport de la Détermination et de l’Identité de leurs Pièces Osseuses. I. J.B. Baillière: Paris.Google Scholar
- Gervais, P. (1872). Ostéologie du Sphargis Luth (Sph. coriacea). Nouveau Archives du Muséum d’Histoire Naturelle, Paris, 8, 199–228.Google Scholar
- Gilbert, S. F., Loredo, G. A., Brukman, A., & Burke, A. C. (2001). Morphogenesis of the turtle shell: The development of a novel structure in tetrapod evolution. Evolution & Development, 3, 47–58.CrossRefGoogle Scholar
- Gilbert, S. F., Bender, G., Betters, E., Yin, M., & Cebra-Thomas, J. A. (2007). The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integrative and Comparative Biology, 47, 401–408.CrossRefGoogle Scholar
- Gilbert, S. F., Cebra-Thomas, J. A., & Burke, A. C. (2008). How the turtle gets its shell. In J. Wyneken, M. H. Godfrey & V. Bels (Eds.), Biology of Turtles (pp. 1–16). Boca Raton: CRC Press.Google Scholar
- Goette, A. (1899). Über die Entwicklung des knöchernen Rückenschildes (Carapax) der Schildkröten. Zeitschrift für wissenschaftliche Zoologie, 66, 407–434.Google Scholar
- Haines, R. W., & Mohuiddin, A. (1968). Metaplastic bone. Journal of Anatomy, 103, 527–538.Google Scholar
- Hay, O. P. (1898). On Protostega, the systematic position of Dermochelys, and the morphogeny of the chelonian carapace and plastron. American Naturalist, 32, 929–948.CrossRefGoogle Scholar
- Hay, O.P. (1905). On the group of fossil turtles known as Amphichelydia; with remarks on the origin and relationships of the suborders, superfamilies, and families of Testudines. Bulletin of the American Museum of Natural History, 21, 137–175.Google Scholar
- Hay, O. P. (1908). The Fossil Turtles of North America. Washington DC: Carnegie Institution.CrossRefGoogle Scholar
- Hay, O. P. (1922). On the phylogeny of the shell of the Testudinata and the relationships of Dermochelys. Journal of Morphology, 36, 421–445.CrossRefGoogle Scholar
- Hay, O. P. (1928). Further consideration of the shell of Chelys and of the constitution of the armor of turtles in general. In Proceedings of the U.S. National Museum, 73, pp.1–12.Google Scholar
- Haycraft, J. B. (1891). The development of the carapace of the Chelonia. Transactions of the Royal Society of Edinburgh, 36, 335–342.CrossRefGoogle Scholar
- Henderson, D. M. (2003). Effects of stomach stones on the buoyancy and equilibrium of a floating crocodilian: A computational analysis. Canadian Journal of Zoology, 81, 1346–1357.CrossRefGoogle Scholar
- Henderson, D. M. (2006). Floating point: A computational study of buoyancy, equilibrium, and gastroliths in plesiosaurs. Lethaia, 39, 227–244.CrossRefGoogle Scholar
- Hill, R. V. (2005). Integration of morphological data sets for phylogenetic analysis: The importance of integumentary characters and increased taxonomic sampling. Systematic Biology, 54, 530–547.CrossRefGoogle Scholar
- Hoffmann, C. K. (1878). Beiträge zur vergleichenden Anatomie der Wirbelthiere. Tafel IX –XIII. Niederländisches Archiv für Zoologie, 4, 112–248.Google Scholar
- Jollie, M. (1962). Chordate Morphology. New York: Reinhold.CrossRefGoogle Scholar
- Joyce, W. J. (2007). Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 48, 3–102.CrossRefGoogle Scholar
- Joyce, W. G., & Gauthier, J. A. (2003). Paleoecology of Triassic stem turtles sheds new light on turtle origins. In Proceedings of the Royal Society of London B, 271, pp. 1–5.Google Scholar
- Joyce, W. G., Lucas, S. G., Scheyer, T. M., Heckert, A. B., & Hunt, A. P. (2009). A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell. In Proceedings of the Royal Society of London B, 276, 507–513.Google Scholar
- Kälin, J. (1945). Zur Morphogenese des Panzers bei den Schildkröten. Acta Anatomica, 1, 144–176.CrossRefGoogle Scholar
- Kordikova, E. G. (2000). Paedomorphosis in the shell of fossil and living turtles. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 218, 399–446.Google Scholar
- Kordikova, E. G. (2002). Heterochrony in the evolution of the shell of Chelonia. Part 1. Terminology, Cheloniidae, Dermochelyidae, Trionychidae, Cyclanorbidae and Carettochelyidae. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 226, 343–417.Google Scholar
- Kuraku, S., Usuda, R., & Kuratani, S. (2005). Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evolution & Development, 7, 3–17.CrossRefGoogle Scholar
- Laurin, M., & Reisz, R. R. (1995). A reevaluation of early amniote phylogeny. Biological Journal of the Linnean Society, 113, 165–223.CrossRefGoogle Scholar
- Lee, M. S. Y. (1993). The origin of the turtle body plan: bridging a famous morphological gap. Science, 261, 1716–1720.CrossRefGoogle Scholar
- Lee, M. S. Y. (1996). Correlated progression and the origin of turtles. Nature, 379, 811–815.Google Scholar
- Li, C., Wu, X.-C., Rieppel, O., Wang, L.-T., & Zhao, L.-J. (2008). An ancestral turtle from the Late Triassic of southwestern China. Nature, 456, 497–501.CrossRefGoogle Scholar
- Menger, W. (1922). Ontogenie und Phylogenie des Schildkrötenpanzers. Ph.D. Dissertation, Hessische Ludwigs-Universität, Giessen.Google Scholar
- Merrem, B. (1820). Versuch eines Systems der Amphibien. Tentamen sistematis amphibiorum. Marburg.CrossRefGoogle Scholar
- Meyer, H.v. (1847). Mittheilungen an Professor Bronn gerichtet. Neues Jahrbuch für Mineralogie, Geognosie, Geologie, und Petrefakten-Kunde, 1847, 572–580.Google Scholar
- Meyer, H. v. (1858). Psephoderma alpinum aus dem Dachsteinkalke der Alpen. Palaeontographica, 6, 246–252.Google Scholar
- Moss, M. L. (1969). Comparative histology of dermal sclerifications in reptiles. Acta Anatomica, 73, 510–533.CrossRefGoogle Scholar
- Moustakas, J. E. (2008). Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evolution & Development, 10, 29–36.CrossRefGoogle Scholar
- Newman, H. H. (1905–1906). The significance of scute and plate “Abnormalities” in Chelonia. Biological Bulletin, 10, 68–114.Google Scholar
- Nagashima, H., Kuraku, S., Uchida, K., Kawashima-Ohya, Y., Narita, Y., & Kuratani, S. (2007). On the carapacial ridge in turtle embryos: Its developmental origin, function and the chelonian body plan. Development, 134, 2219–2226.CrossRefGoogle Scholar
- Nagashima, H., Sugahara, F., Takechi, M., Ericsson, R., Kawashima-Ohya, Y., Narita, Y., & Kuratani, S. (2009). Evolution of the turtle body plan by folding and creation of new muscle connections. Science, 325, 193–196.CrossRefGoogle Scholar
- Nosotti, S., & Pinna, G. (1989). Storia delle ricerche e degli studi sui rettili placodonti. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 24, 29–86.Google Scholar
- Oguschi, K. (1911). Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japanicus). Gegenbaurs Morphologisches Jahrbuch, 43, 1–106.Google Scholar
- Owen, R. (1849). On the development of the carapace and plastron of the chelonian reptiles. Philosophical Transactions of the Royal Society of London, 139, 151–171.CrossRefGoogle Scholar
- Patterson, C. (1977). Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. In S. M. Andrews, R. S. Miles & A. D. Walker (Eds.), Problems in Vertebrate Evolution (pp. 77–121). London: Academic Press.Google Scholar
- Pritchard, P. C. H. (2008). Evolution and structure of the turtle shell. In J. Wyneken, M. H. Godfrey, & V. Bels (Eds.), Biology of the Turtles (pp. 45–83). Boca Raton: CRC Press.Google Scholar
- Procter, J. B. (1922). A study of the remarkable tortoise, Testudo loveridgii Blgr., and the morphogeny of the chelonian carapace. In Proceedings of the Zoological Society of London, 92, 483–526.Google Scholar
- Rathke, H. (1848). Uber die Entwicklung der Schildkröten. Braunschweig: Friedrich Vieweg und Sohn.CrossRefGoogle Scholar
- Reisz, R. R., & Head, J. J. (2008). Turtle origins out to sea. Nature, 456, 450–451.CrossRefGoogle Scholar
- Rieppel, O. (2001). Turtles as hopeful monsters. BioEssays, 23, 987–991.CrossRefGoogle Scholar
- Rieppel, O. (2008). The relationships of turtles within amniotes. In J. Wyneken, M. H. Godfrey, & V. Bels (Eds.), Biology of the Turtles (pp. 345–353). Boca Raton: CRC Press.Google Scholar
- Rieppel, O., & Kearney, M. (2007). The poverty of taxonomic characters. Biology & Philosophy, 22, 95–113.CrossRefGoogle Scholar
- Rieppel, O., Reisz, R. R. (1999). The origin and early evolution of turtles. Annual Review of Ecology and Systematics, 30, 1–22.CrossRefGoogle Scholar
- Ruckes, H. (1929). Studies in chelonian osteology. Part II. The morphological relationships between girdles, ribs and carapace. Annals of the New York Academy of Sciences, 31, 81–120.CrossRefGoogle Scholar
- Sánchez-Villagra, M. R., Müller, H., Scheil, C. A., Scheyer, T. M., Nagashima, H., & Kuratani, S. (2009). Skeletal development in the Chinese soft-shelled turtle Pelodiscus sinensis (Testudines: Trionychidae). Journal of Morphology, 270, 1381–1399.CrossRefGoogle Scholar
- Shearman, R. M., & Burke, A. C. (2009). The lateral somatic frontier in ontogeny and phylogeny. Journal of Experimental Biology (Mol Dev Evol), 312B, 603–612.CrossRefGoogle Scholar
- Scheil, A. A. (2003). Osteology and skeletal development of Apalone spinifera (Reptilia: Testudines: Trionychidae). Journal of Morphology, 256, 42–78.CrossRefGoogle Scholar
- Scheyer, T. M., Brüllmann, B., & Sánchez-Villagra, M. R. (2008). The ontogeny of the shell in side-necked turtles, with emphasis on the homologies of costal and neural bones. Journal of Morphology, 269, 1008–1021.CrossRefGoogle Scholar
- Smith, M. M., & Hall, B. K. (1990). Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biological Reviews, 65, 277–373.CrossRefGoogle Scholar
- Smith, M. M., & Hall, B. K. (1993). A developmental model for the evolution of vertebrate exoskeleton and teeth: the role of cranial and trunk neural crest. Evolutionary Biology, 27, 387–448.Google Scholar
- Starck, D. (1955). Embryologie. Stuttgart: Georg Thieme.Google Scholar
- Starck, D. (1979). Vergleichende Anatomie der Wirbeltiere, Bd. 2. Berlin: Springer.Google Scholar
- Strauch, A. (1890). Bemerkungen über die Schildkrröten-sammlung im Zoologischen Museum der kaiserlichen Akademie der Wissenschaften zu St. Petersburg. Mémoires de l’Académie Impériale des Sciences, St. Petersburg, (7) 38, 1–127.Google Scholar
- Taylor, A. M. (1993). Stomach stones for feeding or buoyancy? The occurrence and function of gastroliths in marine tetrapods. Philosophical Transactions of the Royal Society of London B, 341, 163–175.CrossRefGoogle Scholar
- Taylor, A. M. (1994). Stone, bone or blubber? Buoyancy control strategies in aquatic tetrapod. In L. Maddock, Q. Bone & J. M. V. Rayner (Eds.), Mechanics and Physiology of Animal Swimming (pp. 151–161). Cambridge UK: Cambridge University Press.CrossRefGoogle Scholar
- Taylor, A. M. (2000). Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods. Historical Biology, 14: 15–31.CrossRefGoogle Scholar
- Taylor, A. M. (2002). Origin of marine mammals. In W. F. Perrin, B. Würsig, & J. G. M. Thewissen (Eds.), Encyclopedia of Marine Mammals (pp. 833–837). San Diego: Academic Press.Google Scholar
- Vallén, E. (1942). Beiträge zur Kenntnis der Ontogenie und der vergleichenden Anatomie des Schildkrötenpanzers. Acta Zoologica, Stockholm, 23, 1–127.CrossRefGoogle Scholar
- Versluys, J. (1914). Über die Phylogenie des Panzers der Schildkröten und über die Verwandtschaft der Lederschildkröte (Dermochelys coriacea). Paläontologische Zeitschrift, 1, 321–347.CrossRefGoogle Scholar
- Vickaryous, M. K., & Hall, B. K. (2008). Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. Journal of Morphology, 260, 398–422.CrossRefGoogle Scholar
- Völker, H. (1913). Über das Stamm, Gliedmassen-, und Hautskelett von Dermochelys coriacea L. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 33, 431–552.Google Scholar
- Wang, X., Bachmann, G. H., Hagdorn, H., Sander, P. M., Cuny, G., Chen, X., et al. (2008). The Late Triassic black shales from the Guanling area, Guizhou Province, south-west China: A unique marine reptile and pelagic crinoid fossil Lagerstätte. Palaeontology, 51, 27–61.CrossRefGoogle Scholar
- Wiedeman, C. R. W. (1802). Anatomische Beschreibung der Schildkröten überhaupt und der getäfelten Schildkröte (T. tesselata Schneid., T. tabulata Walbaum) insbesondere. Archiv für Zoologie und Zootomie, 2, 177–210.Google Scholar
- Wieland, G. R. (1896). Archelon ischyrios: A new gigantic Cryptodire Testudinate from Fort Pierre Cretaceous of South Dakota. American Journal of Science, 2(4), 399–415.CrossRefGoogle Scholar
- Wieland, G. R. (1905). On marine turtles. American Journal of Science, 20, 325–343.CrossRefGoogle Scholar
- Wieland, G. R. (1909). Revision of the Protostegidae. American Journal of Science, 27(4), 237–251.Google Scholar
- Wings, O. (2007). A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontologica Polonica, 52: 1–16.Google Scholar
- Yntema, C. L. A. (1968). A series of stages in the embryonic development of Chelydra serpentina. Journal of Morphology, 125, 219–252.CrossRefGoogle Scholar
- Zangerl, R. (1939). The homology of the shell elements in turtles. Journal of Morphology, 65, 383–406.CrossRefGoogle Scholar
- Zangerl, R. (1969). The turtle shell. In C. Gans, A. d’A. Bellairs, & T. S. Parsons (Eds.), Biology of the Reptilia, (Vol. 1). Morphology A (pp. 311–339). London: Academic Press.Google Scholar