The Evolution of the Turtle Shell

Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

This chapter traces the history of the debate on the evolution of the turtle shell, and carries the analysis of the origin of the turtle carapace forward from two complementary perspectives, viz. paleontology and developmental biology. Two alternative approaches to morphological analysis—the transformationist and the emergentist—are identified. The transformationist approach seeks to understand morphological evolution as a consequence of the gradual, step-wise transformation of the adult phenotype. The emergentist approach allows for ontogenetic deviation to result in the development of evolutionary novelties. The discovery of the so far oldest and most primitive turtle known, from the early Late Triassic of southwestern China, provides the basis for a synthesis of paleontological and developmental data in the understanding of the evolutionary origin of the turtle shell.

Keywords

Carapace Dermal bone Dermochelys Membrane bone Odontochelys 

Notes

Acknowledgments

I thank Anne Burke, Robert L. Carroll, Hiroshi Nagashima, Torsten M. Scheyer, Michael A. Taylor, and Matthew K. Vickaryous, who all offered helpful comments on an earlier draft of this paper.

References

  1. Baur, G. (1886). Osteologische Notizen über Reptilien. Zoologischer Anzeiger, 9, 685–690.Google Scholar
  2. Baur, G. (1887). On the morphogeny of the carapace of the Testudinata. The American Naturalist, 21, 89.Google Scholar
  3. Baur, G. (1888). Unusual dermal ossifications. Science, 11, 144–145.CrossRefGoogle Scholar
  4. Baur, G. (1889). Die systematische Stellung von Dermochelys Blainv. Biologisches Zentralblatt, 9, 149–153.Google Scholar
  5. Burke, A. C. (1989a). Critical feature in chelonian development: The ontogeny and phylogeny of a unique tetrapod bauplan. Ph.D Dissertation, Harvard University, Cambridge, MA.Google Scholar
  6. Burke, A. C. (1989b). Development of the turtle carapace: Implications for the evolution of a novel bauplan. Journal of Morphology, 199, 363–378.CrossRefGoogle Scholar
  7. Burke, A. C. (1991). The development and evolution of the turtle body plan: Inferring intrinsic aspects of the evolutionary process from experimental embryology. American Zoologist, 31, 616–627.Google Scholar
  8. Burke, A. C. (2009). Turtles …… again. Evolution & Development, 11, 622–624.CrossRefGoogle Scholar
  9. Carroll, R. L. (1988). Vertebrate Paleontology and Evolution. New York: W. H. Freeman.Google Scholar
  10. Carus, K. G. (1834). Lehrbuch der Vergleichenden Zootomie. 2. Aufl., Bd. I. . Leipzig: Ernst Fleischer.Google Scholar
  11. Case, E. C. (1898). Toxochelys. University of Kansas Geological Survey, 4, 370–385.Google Scholar
  12. Cebra-Thomas, J. A., Betters, E., Yin, M., Plafkin, C., McDow, K., & Gilbert, S. F. (2007). Evidence that a late-emerging population of trunk neural crest cells forms the plastron in the turtle Trachemys scriptascripta. Evolution & Development, 9, 267–277.CrossRefGoogle Scholar
  13. Cebra-Thomas, J. A., Tan, F., Sistla, S., Estes, E., Bender, G., Kim, C., Riccio, P., & Gilbert, S. F. (2005). How the turtle forms its shell: A paracrine hypothesis of carapace formation. Journal of Experimental Zoology (Mol Dev Evol), 304B, 558–569.CrossRefGoogle Scholar
  14. Clark, K., Bender, G., Murray, B. P., Panfilio, K., Cook, S., Davis, R., Murnen, K., Tuan, R. S., & Gilbert, S. F. (2001). Evidence for the neural crest origin of turtle plastron bones. Genesis, 3, 111–117.CrossRefGoogle Scholar
  15. Cope, E. D. (1871). On the homologies of some of the cranial bones of the Reptilia, and the systematic arrangement of the class. In Proceedings of the American Association for the Advancement of Science, (pp. 194–247).Google Scholar
  16. Cuvier, G. (1799). Leçons d’Anatomie Comparée, Vol. I. Paris: Boudouin.Google Scholar
  17. Cuvier, G. (1812). Recherches sur les Ossements Fossiles de Quadrupèdes, Vol. IV. Paris: Deterville.Google Scholar
  18. Darwin, Ch. (1859). On the Origin of Species. London: John Murray.Google Scholar
  19. Dollo, L. (1886). Première note sur les chéloniens du Bruxellien (Eocène moyen) de la Belgique. Bulletin du Musée Royale d’Histoire Naturelle de la Belgique, 4, 75–96.Google Scholar
  20. Gaffney, E. S. (1990). The comparative osteology of the Triassic turtle Proganochelys. Bulletin of the American Museum of Natural History, 194, 1–263.Google Scholar
  21. Gauthier, J. A. (1994). The diversification of amniotes. In D. Prothero, & R. M. Schoch (Eds.), Major Features of Vertebrate Evolution (pp. 129–159). Knoxville: Paleontological Society.Google Scholar
  22. Geoffroy, S-H. E. (1818). Philosophie Anatomique. Des Organes Respiratoires sous le Rapport de la Détermination et de l’Identité de leurs Pièces Osseuses. I. J.B. Baillière: Paris.Google Scholar
  23. Gervais, P. (1872). Ostéologie du Sphargis Luth (Sph. coriacea). Nouveau Archives du Muséum d’Histoire Naturelle, Paris, 8, 199–228.Google Scholar
  24. Gilbert, S. F., Loredo, G. A., Brukman, A., & Burke, A. C. (2001). Morphogenesis of the turtle shell: The development of a novel structure in tetrapod evolution. Evolution & Development, 3, 47–58.CrossRefGoogle Scholar
  25. Gilbert, S. F., Bender, G., Betters, E., Yin, M., & Cebra-Thomas, J. A. (2007). The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integrative and Comparative Biology, 47, 401–408.CrossRefGoogle Scholar
  26. Gilbert, S. F., Cebra-Thomas, J. A., & Burke, A. C. (2008). How the turtle gets its shell. In J. Wyneken, M. H. Godfrey & V. Bels (Eds.), Biology of Turtles (pp. 1–16). Boca Raton: CRC Press.Google Scholar
  27. Goette, A. (1899). Über die Entwicklung des knöchernen Rückenschildes (Carapax) der Schildkröten. Zeitschrift für wissenschaftliche Zoologie, 66, 407–434.Google Scholar
  28. Haines, R. W., & Mohuiddin, A. (1968). Metaplastic bone. Journal of Anatomy, 103, 527–538.Google Scholar
  29. Hay, O. P. (1898). On Protostega, the systematic position of Dermochelys, and the morphogeny of the chelonian carapace and plastron. American Naturalist, 32, 929–948.CrossRefGoogle Scholar
  30. Hay, O.P. (1905). On the group of fossil turtles known as Amphichelydia; with remarks on the origin and relationships of the suborders, superfamilies, and families of Testudines. Bulletin of the American Museum of Natural History, 21, 137–175.Google Scholar
  31. Hay, O. P. (1908). The Fossil Turtles of North America. Washington DC: Carnegie Institution.CrossRefGoogle Scholar
  32. Hay, O. P. (1922). On the phylogeny of the shell of the Testudinata and the relationships of Dermochelys. Journal of Morphology, 36, 421–445.CrossRefGoogle Scholar
  33. Hay, O. P. (1928). Further consideration of the shell of Chelys and of the constitution of the armor of turtles in general. In Proceedings of the U.S. National Museum, 73, pp.1–12.Google Scholar
  34. Haycraft, J. B. (1891). The development of the carapace of the Chelonia. Transactions of the Royal Society of Edinburgh, 36, 335–342.CrossRefGoogle Scholar
  35. Henderson, D. M. (2003). Effects of stomach stones on the buoyancy and equilibrium of a floating crocodilian: A computational analysis. Canadian Journal of Zoology, 81, 1346–1357.CrossRefGoogle Scholar
  36. Henderson, D. M. (2006). Floating point: A computational study of buoyancy, equilibrium, and gastroliths in plesiosaurs. Lethaia, 39, 227–244.CrossRefGoogle Scholar
  37. Hill, R. V. (2005). Integration of morphological data sets for phylogenetic analysis: The importance of integumentary characters and increased taxonomic sampling. Systematic Biology, 54, 530–547.CrossRefGoogle Scholar
  38. Hoffmann, C. K. (1878). Beiträge zur vergleichenden Anatomie der Wirbelthiere. Tafel IX –XIII. Niederländisches Archiv für Zoologie, 4, 112–248.Google Scholar
  39. Jollie, M. (1962). Chordate Morphology. New York: Reinhold.CrossRefGoogle Scholar
  40. Joyce, W. J. (2007). Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 48, 3–102.CrossRefGoogle Scholar
  41. Joyce, W. G., & Gauthier, J. A. (2003). Paleoecology of Triassic stem turtles sheds new light on turtle origins. In Proceedings of the Royal Society of London B, 271, pp. 1–5.Google Scholar
  42. Joyce, W. G., Lucas, S. G., Scheyer, T. M., Heckert, A. B., & Hunt, A. P. (2009). A thin-shelled reptile from the Late Triassic of North America and the origin of the turtle shell. In Proceedings of the Royal Society of London B, 276, 507–513.Google Scholar
  43. Kälin, J. (1945). Zur Morphogenese des Panzers bei den Schildkröten. Acta Anatomica, 1, 144–176.CrossRefGoogle Scholar
  44. Kordikova, E. G. (2000). Paedomorphosis in the shell of fossil and living turtles. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 218, 399–446.Google Scholar
  45. Kordikova, E. G. (2002). Heterochrony in the evolution of the shell of Chelonia. Part 1. Terminology, Cheloniidae, Dermochelyidae, Trionychidae, Cyclanorbidae and Carettochelyidae. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 226, 343–417.Google Scholar
  46. Kuraku, S., Usuda, R., & Kuratani, S. (2005). Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evolution & Development, 7, 3–17.CrossRefGoogle Scholar
  47. Laurin, M., & Reisz, R. R. (1995). A reevaluation of early amniote phylogeny. Biological Journal of the Linnean Society, 113, 165–223.CrossRefGoogle Scholar
  48. Lee, M. S. Y. (1993). The origin of the turtle body plan: bridging a famous morphological gap. Science, 261, 1716–1720.CrossRefGoogle Scholar
  49. Lee, M. S. Y. (1996). Correlated progression and the origin of turtles. Nature, 379, 811–815.Google Scholar
  50. Li, C., Wu, X.-C., Rieppel, O., Wang, L.-T., & Zhao, L.-J. (2008). An ancestral turtle from the Late Triassic of southwestern China. Nature, 456, 497–501.CrossRefGoogle Scholar
  51. Menger, W. (1922). Ontogenie und Phylogenie des Schildkrötenpanzers. Ph.D. Dissertation, Hessische Ludwigs-Universität, Giessen.Google Scholar
  52. Merrem, B. (1820). Versuch eines Systems der Amphibien. Tentamen sistematis amphibiorum. Marburg.CrossRefGoogle Scholar
  53. Meyer, H.v. (1847). Mittheilungen an Professor Bronn gerichtet. Neues Jahrbuch für Mineralogie, Geognosie, Geologie, und Petrefakten-Kunde, 1847, 572–580.Google Scholar
  54. Meyer, H. v. (1858). Psephoderma alpinum aus dem Dachsteinkalke der Alpen. Palaeontographica, 6, 246–252.Google Scholar
  55. Moss, M. L. (1969). Comparative histology of dermal sclerifications in reptiles. Acta Anatomica, 73, 510–533.CrossRefGoogle Scholar
  56. Moustakas, J. E. (2008). Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development. Evolution & Development, 10, 29–36.CrossRefGoogle Scholar
  57. Newman, H. H. (1905–1906). The significance of scute and plate “Abnormalities” in Chelonia. Biological Bulletin, 10, 68–114.Google Scholar
  58. Nagashima, H., Kuraku, S., Uchida, K., Kawashima-Ohya, Y., Narita, Y., & Kuratani, S. (2007). On the carapacial ridge in turtle embryos: Its developmental origin, function and the chelonian body plan. Development, 134, 2219–2226.CrossRefGoogle Scholar
  59. Nagashima, H., Sugahara, F., Takechi, M., Ericsson, R., Kawashima-Ohya, Y., Narita, Y., & Kuratani, S. (2009). Evolution of the turtle body plan by folding and creation of new muscle connections. Science, 325, 193–196.CrossRefGoogle Scholar
  60. Nosotti, S., & Pinna, G. (1989). Storia delle ricerche e degli studi sui rettili placodonti. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 24, 29–86.Google Scholar
  61. Oguschi, K. (1911). Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japanicus). Gegenbaurs Morphologisches Jahrbuch, 43, 1–106.Google Scholar
  62. Owen, R. (1849). On the development of the carapace and plastron of the chelonian reptiles. Philosophical Transactions of the Royal Society of London, 139, 151–171.CrossRefGoogle Scholar
  63. Patterson, C. (1977). Cartilage bones, dermal bones and membrane bones, or the exoskeleton versus the endoskeleton. In S. M. Andrews, R. S. Miles & A. D. Walker (Eds.), Problems in Vertebrate Evolution (pp. 77–121). London: Academic Press.Google Scholar
  64. Pritchard, P. C. H. (2008). Evolution and structure of the turtle shell. In J. Wyneken, M. H. Godfrey, & V. Bels (Eds.), Biology of the Turtles (pp. 45–83). Boca Raton: CRC Press.Google Scholar
  65. Procter, J. B. (1922). A study of the remarkable tortoise, Testudo loveridgii Blgr., and the morphogeny of the chelonian carapace. In Proceedings of the Zoological Society of London, 92, 483–526.Google Scholar
  66. Rathke, H. (1848). Uber die Entwicklung der Schildkröten. Braunschweig: Friedrich Vieweg und Sohn.CrossRefGoogle Scholar
  67. Reisz, R. R., & Head, J. J. (2008). Turtle origins out to sea. Nature, 456, 450–451.CrossRefGoogle Scholar
  68. Rieppel, O. (2001). Turtles as hopeful monsters. BioEssays, 23, 987–991.CrossRefGoogle Scholar
  69. Rieppel, O. (2008). The relationships of turtles within amniotes. In J. Wyneken, M. H. Godfrey, & V. Bels (Eds.), Biology of the Turtles (pp. 345–353). Boca Raton: CRC Press.Google Scholar
  70. Rieppel, O., & Kearney, M. (2007). The poverty of taxonomic characters. Biology & Philosophy, 22, 95–113.CrossRefGoogle Scholar
  71. Rieppel, O., Reisz, R. R. (1999). The origin and early evolution of turtles. Annual Review of Ecology and Systematics, 30, 1–22.CrossRefGoogle Scholar
  72. Ruckes, H. (1929). Studies in chelonian osteology. Part II. The morphological relationships between girdles, ribs and carapace. Annals of the New York Academy of Sciences, 31, 81–120.CrossRefGoogle Scholar
  73. Sánchez-Villagra, M. R., Müller, H., Scheil, C. A., Scheyer, T. M., Nagashima, H., & Kuratani, S. (2009). Skeletal development in the Chinese soft-shelled turtle Pelodiscus sinensis (Testudines: Trionychidae). Journal of Morphology, 270, 1381–1399.CrossRefGoogle Scholar
  74. Shearman, R. M., & Burke, A. C. (2009). The lateral somatic frontier in ontogeny and phylogeny. Journal of Experimental Biology (Mol Dev Evol), 312B, 603–612.CrossRefGoogle Scholar
  75. Scheil, A. A. (2003). Osteology and skeletal development of Apalone spinifera (Reptilia: Testudines: Trionychidae). Journal of Morphology, 256, 42–78.CrossRefGoogle Scholar
  76. Scheyer, T. M., Brüllmann, B., & Sánchez-Villagra, M. R. (2008). The ontogeny of the shell in side-necked turtles, with emphasis on the homologies of costal and neural bones. Journal of Morphology, 269, 1008–1021.CrossRefGoogle Scholar
  77. Smith, M. M., & Hall, B. K. (1990). Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biological Reviews, 65, 277–373.CrossRefGoogle Scholar
  78. Smith, M. M., & Hall, B. K. (1993). A developmental model for the evolution of vertebrate exoskeleton and teeth: the role of cranial and trunk neural crest. Evolutionary Biology, 27, 387–448.Google Scholar
  79. Starck, D. (1955). Embryologie. Stuttgart: Georg Thieme.Google Scholar
  80. Starck, D. (1979). Vergleichende Anatomie der Wirbeltiere, Bd. 2. Berlin: Springer.Google Scholar
  81. Strauch, A. (1890). Bemerkungen über die Schildkrröten-sammlung im Zoologischen Museum der kaiserlichen Akademie der Wissenschaften zu St. Petersburg. Mémoires de l’Académie Impériale des Sciences, St. Petersburg, (7) 38, 1–127.Google Scholar
  82. Taylor, A. M. (1993). Stomach stones for feeding or buoyancy? The occurrence and function of gastroliths in marine tetrapods. Philosophical Transactions of the Royal Society of London B, 341, 163–175.CrossRefGoogle Scholar
  83. Taylor, A. M. (1994). Stone, bone or blubber? Buoyancy control strategies in aquatic tetrapod. In L. Maddock, Q. Bone & J. M. V. Rayner (Eds.), Mechanics and Physiology of Animal Swimming (pp. 151–161). Cambridge UK: Cambridge University Press.CrossRefGoogle Scholar
  84. Taylor, A. M. (2000). Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods. Historical Biology, 14: 15–31.CrossRefGoogle Scholar
  85. Taylor, A. M. (2002). Origin of marine mammals. In W. F. Perrin, B. Würsig, & J. G. M. Thewissen (Eds.), Encyclopedia of Marine Mammals (pp. 833–837). San Diego: Academic Press.Google Scholar
  86. Vallén, E. (1942). Beiträge zur Kenntnis der Ontogenie und der vergleichenden Anatomie des Schildkrötenpanzers. Acta Zoologica, Stockholm, 23, 1–127.CrossRefGoogle Scholar
  87. Versluys, J. (1914). Über die Phylogenie des Panzers der Schildkröten und über die Verwandtschaft der Lederschildkröte (Dermochelys coriacea). Paläontologische Zeitschrift, 1, 321–347.CrossRefGoogle Scholar
  88. Vickaryous, M. K., & Hall, B. K. (2008). Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. Journal of Morphology, 260, 398–422.CrossRefGoogle Scholar
  89. Völker, H. (1913). Über das Stamm, Gliedmassen-, und Hautskelett von Dermochelys coriacea L. Zoologische Jahrbücher, Abteilung für Anatomie und Ontogenie der Tiere, 33, 431–552.Google Scholar
  90. Wang, X., Bachmann, G. H., Hagdorn, H., Sander, P. M., Cuny, G., Chen, X., et al. (2008). The Late Triassic black shales from the Guanling area, Guizhou Province, south-west China: A unique marine reptile and pelagic crinoid fossil Lagerstätte. Palaeontology, 51, 27–61.CrossRefGoogle Scholar
  91. Wiedeman, C. R. W. (1802). Anatomische Beschreibung der Schildkröten überhaupt und der getäfelten Schildkröte (T. tesselata Schneid., T. tabulata Walbaum) insbesondere. Archiv für Zoologie und Zootomie, 2, 177–210.Google Scholar
  92. Wieland, G. R. (1896). Archelon ischyrios: A new gigantic Cryptodire Testudinate from Fort Pierre Cretaceous of South Dakota. American Journal of Science, 2(4), 399–415.CrossRefGoogle Scholar
  93. Wieland, G. R. (1905). On marine turtles. American Journal of Science, 20, 325–343.CrossRefGoogle Scholar
  94. Wieland, G. R. (1909). Revision of the Protostegidae. American Journal of Science, 27(4), 237–251.Google Scholar
  95. Wings, O. (2007). A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontologica Polonica, 52: 1–16.Google Scholar
  96. Yntema, C. L. A. (1968). A series of stages in the embryonic development of Chelydra serpentina. Journal of Morphology, 125, 219–252.CrossRefGoogle Scholar
  97. Zangerl, R. (1939). The homology of the shell elements in turtles. Journal of Morphology, 65, 383–406.CrossRefGoogle Scholar
  98. Zangerl, R. (1969). The turtle shell. In C. Gans, A. d’A. Bellairs, & T. S. Parsons (Eds.), Biology of the Reptilia, (Vol. 1). Morphology A (pp. 311–339). London: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1. The Field MuseumChicagoUSA

Personalised recommendations