Origin of the Turtle Body Plan: The Folding Theory to Illustrate Turtle-Specific Developmental Repatterning

  • Hiroshi Nagashima
  • Shigehiro Kuraku
  • Katsuhisa Uchida
  • Yoshie Kawashima-Ohya
  • Yuichi Narita
  • Shigeru KurataniEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


The turtle shell is comprised of a dorsal carapace and a ventral plastron, and is an autapomorphy of this group. The carapace consists of the vertebral column and ribs as well as a specialized dermis. The formation of the shell is accompanied by a change in the spatial relationship of the ribs and the pectoral girdle. Because of this rearrangement, the turtle shell has been regarded as an example of an evolutionary novelty. Understanding the changes behind this developmental repatterning will help us elucidate the evolutionary history of turtles. The change has been attributed to a deflected pattern of development of the ribs, which in normal tetrapods grow ventrally into the lateral body wall. In turtles, they grow laterally toward the primordium of the carapacial margin, called the carapacial ridge (CR), while remaining in the axial part of the embryonic body. Based on a similarity in histological configuration, the CR has been thought to possess inductive activity for rib growth, as seen in the apical ectodermal ridge of the amniote limb bud. The CR does not function as a guidance cue for rib progenitor cells but rather functions in the marginal growth of the carapacial primordium, resulting in fanned-out growth of the ribs. This peripheral and concentric expansion of the axial domain makes the lateral body wall fold inward, while the ribs cover the pectoral girdle. The turtle ribs develop along the muscle plate as in other amniotes, and do not take a different trajectory from that in other amniotes, unlike the scenario hypothesized previously. This folding enables turtles to change the apparent spatial relationships between the ribs and the pectoral girdle without altering their topological alignment and body plan as amniotes. This developmental sequence of the modern turtles aligns with a stepwise evolutionary process in the group, which is supported by the anatomy of a recently discovered fossil species, Odontochelys.


Carapacial ridge Development Odontochelys Proganochelys Ribs Turtle Shell 



We thank Dr. Don Brinkman for arranging the Gaffney Turtle Symposium and Festschrift publication in honor of Dr. Eugene S. Gaffney. We acknowledge Dr. Robert Carroll, Dr. Eugene S. Gaffney, and Dr. Olivier Rieppel for critical reading of the manuscript.


  1. Aoyama, H., & Asamoto, K. (2000). The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: Experimental confirmation of the resegmentation theory using chick-quail chimeras. Mechanisms of Development, 99, 71–82. Google Scholar
  2. Aoyama, H., Mizutani-Koseki, S., & Koseki, H. (2005). Three developmental compartments involved in rib formation. International Journal of Developmental Biology, 49, 325–333.Google Scholar
  3. Birchmeier, C., & Brohmann, H. (2000). Genes that control the development of migrating muscle precursor cells. Current Opinion in Cell Biology, 12, 725–730.Google Scholar
  4. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., & Birchmeier, C. (1995). Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature, 376, 768–771.Google Scholar
  5. Braun, T., & Arnold, H. H. (1995). Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO Journal, 14, 1176–1186.Google Scholar
  6. Braun, T., Rudnicki, M. A., Arnold, H. H., & Jaenisch, R. (1992). Targeted inactivation of the muscle regulatory gene Myf–5 results in abnormal rib development and perinatal death. Cell, 71, 369–382.Google Scholar
  7. Braun, T., Bober, E., Rudnicki, M. A., Jaenisch, R., & Arnold, H. H. (1994). MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development, 120, 3083–3092.Google Scholar
  8. Brent, A. E., Schweitzer, R., & Tabin, C. J. (2003). A somitic compartment of tendon progenitors. Cell, 18, 235–248.Google Scholar
  9. Brent, A. E., Braun, T., & Tabin, C. J. (2005). Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development, 132, 515–528.Google Scholar
  10. Burke, A. C. (1989). Development of the turtle carapace: Implications for the evolution of a novel bauplan. Journal of Morphology, 199, 363–378.Google Scholar
  11. Burke, A. C. (1991). The development and evolution of the turtle body plan. Inferring intrinsic aspects of the evolutionary process from experimental embryology. American Zoologist, 31, 616–627.Google Scholar
  12. Burke, A. C. (2000). Hox genes and the global patterning of the somitic mesoderm. Current Topics in Developmental Biology, 47, 155–181.Google Scholar
  13. Burke, A. C. (2009). Turtles…again. Evolution & Development, 11, 622–624.Google Scholar
  14. Cebra-Thomas, J., Tan, F., Sistla, S., Estes, E., Bender, G., Kim, C., et al. (2005). How the turtle forms its shell: A paracrine hypothesis of carapace formation. Journal of Experimental Zoology, 304B, 558–569.Google Scholar
  15. Cebra-Thomas, J. A., Betters, E., Yin, M., Plafkin, C., McDow, K., & Gilbert, S. F. (2007). Evidence that a late-emerging population of trunk neural crest cells forms the plastron bones in the turtle Trachemys scripta. Evolution & Development, 9, 267−277.Google Scholar
  16. Chevallier, A. (1979). Role of the somitic mesoderm in the development of the thorax in bird embryos. II. Origin of thoracic and appendicular musculature. Journal of Embryology & Experimental Morphology, 49, 73–88.Google Scholar
  17. Chiang, C., Litingtung, Y., Lee, E., Young, K. E., Corden, J. L., Westphal, H., et al. (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383, 407–413.Google Scholar
  18. Christ, B., & Ordahl, C. P. (1995). Early stages of chick somite development. Anatomy and Embryology, 191, 381–396.Google Scholar
  19. Christ, B., & Scaal, M. (2008). Formation and differentiation of avian somite derivatives. Advances in Experimental Medicine and Biology, 638, 1–41.Google Scholar
  20. Christ, B., & Wilting, J. (1992). From somites to vertebral column. Annals of Anatomy, 174, 23–32.Google Scholar
  21. Christ, B., Jacob, H. J., & Jacob, M. (1974). Origin of wing musculature. Experimental studies on quail and chick embryos. Experientia, 30, 1446–1449.Google Scholar
  22. Christ, B., Jacob, H. J., & Jacob, M. (1979). Differentiating abilities of avian somatopleural mesoderm. Experientia, 35, 1376–1378.Google Scholar
  23. Christ, B., Jacob, M., & Jacob, H. J. (1983). On the origin and development of the ventrolateral abdominal muscles in the avian embryo: An experimental and ultrastructural study. Anatomy and Embryology, 166, 87–101.Google Scholar
  24. Christ, B., Huang, R., & Scaal, M. (2004). Formation and differentiation of the avian sclerotome. Anatomy and Embryology, 208, 333–350.Google Scholar
  25. Clark, K., Bender, G., Murray, B. P., Panfilio, K., Cook, S., Davis, R., et al. (2001). Evidence for the neural crest origin of turtle plastron bones. Genesis, 31, 111–117.Google Scholar
  26. Collins, C. A., & Watt, F. M. (2008). Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for β-catenin and Notch signalling. Developmental Biology, 324, 55–67.Google Scholar
  27. Crossley, P. H., Minowada, G., MacArthur, C. A., & Martin, G. R. (1996). Roles for FGF8 in the induction, initiation, and maintenance of chick limb development. Cell, 84, 127–136.Google Scholar
  28. Danilkovitch-Miagkova, A., Miagkov, A., Skeel, A., Nakaigawa, N., Zbar, B., & Leonard, E. J. (2001). Oncogenic mutants of RON and MET receptor tyrosine kinases cause activation of the β-catenin pathway. Molecular and Cellular Biology, 21, 5857–5868.Google Scholar
  29. Dickman, E. D., Rogers, R., & Conway, S. J. (1999). Abnormal skeletogenesis occurs coincident with increased apoptosis in the Splotch (Sp2H) mutant: Putative roles for Pax3 and PDGFRalpha in rib patterning. Anatomical Record, 255, 353–361.Google Scholar
  30. Dietrich, S., & Gruss, P. (1995). Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Developmental Biology, 167, 529–548.Google Scholar
  31. Dietrich, S., Schubert, F. R., & Gruss, P. (1993) Altered Pax gene expression in mouse notochord mutants: The notochord is required to initiate and maintain ventral identity in the somite. Mechanisms of Development, 44, 189–207.Google Scholar
  32. Dietrich, S., Schubert, F. R., & Lumsden, A. (1997). Control of dorsoventral pattern in the chick paraxial mesoderm. Development, 124, 3895–908.Google Scholar
  33. Evans, D. J. R. (2003). Contribution of somitic cells to the avian ribs. Developmental Biology, 256, 114–126.Google Scholar
  34. Fernandez-Teran, M., & Ros, M. A. (2008). The Apical Ectodermal Ridge: Morphological aspects and signaling pathways. International Journal of Developmental Biology, 52, 857–871.Google Scholar
  35. Floß, T., Arnold, H. H., & Braun, T. (1996). Myf-5m1/Myf-6m1 compound heterozygous mouse mutants down-regulate Myf-5 expression and exert rib defects: Evidence for long-range cis effects on Myf-5 transcription. Developmental Biology, 174, 140–147.Google Scholar
  36. Fraidenraich, D., Lang, R., & Basilico, C. (1998). Distinct regulatory elements govern Fgf4 gene expression in the mouse blastocyst, myotomes, and developing limb. Developmental Biology, 204, 197–209. Google Scholar
  37. Fraidenraich, D., Iwahori, A., Rudnicki, M., & Basilico, C. (2000). Activation of fgf4 gene expression in the myotomes is regulated by myogenic bHLH factors and by sonic hedgehog. Developmental Biology, 225, 392–406.Google Scholar
  38. Gaffney, E. S. (1990). The comparative osteology of the Triassic turtle Proganochelys. Bulletin of the American Museum of Natural History, 194, 1−263.Google Scholar
  39. Gegenbaur, C. (1898) Vergleichende Anatomie der Wirbelthiere, Leipzig: Verlag von Wilhelm Engelmann.Google Scholar
  40. Gilbert, S. C. (2010). Developmental biology (9th ed.). Sunderland: Sinauer Associates Inc.Google Scholar
  41. Gilbert, S. F., Loredo, G. A., Brukman, A., & Burke, A. C. (2001). Morphogenesis of the turtle shell: The development of a novel structure in tetrapod evolution. Evolution & Development, 3, 47–58.Google Scholar
  42. Gilbert, S. F., Bender, G., Betters, E., Yin, M., & Cebra-Thomas, J. A. (2007). The contribution of neural crest cells to the nuchal bone and plastron of the turtle shell. Integrative and Comparative Biology, 47, 401–408.Google Scholar
  43. Gilbert, S. F., Cebra-Thomas, J. A., & Burke, A. C. (2008). How the turtle gets its shell. In J. Wyneken, M. H. Godfrey & V. Bels (Eds.), Biology of turtles. (pp. 1–16). Boca Raton: CRC Press.Google Scholar
  44. Goodrich, E. S. (1930). Studies on the structure and development of vertebrates. London: Macmillan.Google Scholar
  45. Grass, S., Arnold, H. H., & Braun, T. (1996). Alterations in somite patterning of Myf-5-deficient mice: A possible role for FGF-4 and FGF-6. Development, 122, 141–150.Google Scholar
  46. Grifone, R., Demignon, J., Houbron, C., Souil, E., Niro, C., Seller, M. J., et al. (2005). Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo. Development, 132, 2235–2249.Google Scholar
  47. Gros, J., Scaal, M., & Marcelle, C. (2004). A two-step mechanism for myotome formation in chick. Developmental Cell, 6, 875–882.Google Scholar
  48. Hall, B. K. (1998). Evolutionary developmental biology (2nd ed.). London: Chapman & Hall.Google Scholar
  49. Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88, 49–92.Google Scholar
  50. Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N. et al. (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364, 501–506.Google Scholar
  51. Henderson, D. J., Conway, S. J., & Copp, A. J. (1999). Rib truncations and fusions in the Sp2H mouse reveal a role for Pax3 in specification of the ventrolateral and posterior parts of the somite. Developmental Biology, 209, 143–158.Google Scholar
  52. Huang, R., & Christ, B. (2000). Origin of the epaxial and hypaxial myotome in avian embryos. Anatomy and Embryology, 202, 369–374.Google Scholar
  53. Huang, R., Zhi, Q., Wilting, J., & Christ, B. (1994). The fate of the somitocoele cells in avian embryos. Anatomy and Embryology, 190, 243–250.Google Scholar
  54. Huang, R., Zhi, Q., Neubüser, A., Müller, T. S., Brand-Saberi, B., & Christ, B., et al. (1996). Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos. Acta Anatomica, 155, 231–241.Google Scholar
  55. Huang, R., Zhi, Q., Patel, K., Wilting, J., & Christ, B. (2000a). Dual origin and segmental organisation of the avian scapula. Development, 127, 3789–3794. Google Scholar
  56. Huang, R., Zhi, Q., Schmidt, C., Wilting, J., Brand-Saberi, B., & Christ, B. (2000b). Sclerotomal origin of the ribs. Development, 127, 527–532.Google Scholar
  57. Huang, R., Zhi, Q., Scmhidt, C., Brand-Saberi, B., & Christ, B. (2000c). New experimental evidence for somite resegmentation. Anatomy and. Embryology, 202, 195–200.Google Scholar
  58. Huang, R., Stolte, D., Kurz, H., Ehehalt, F., Cann, G. M., Stockdale, F. E., et al. (2003). Ventral axial organs regulate expression of myotomal Fgf-8 that influences rib development. Developmental Biology, 255, 30–47.Google Scholar
  59. Kablar, B., Krastel, K., Ying, C., Asakura, A., Tapscott, S. J., & Rudnicki, M.A. (1997). MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development, 124, 4729–4738.Google Scholar
  60. Kardon, G. (1998). Muscle and tendon morphogenesis in the avian hind limb. Development, 125, 4019–4032.Google Scholar
  61. Kardon, G., Harfe, B. D., & Tabin, C. J. (2003). A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning. Developmental Cell, 5, 937–944.Google Scholar
  62. Kato, N., & Aoyama, H. (1998). Dermomyotomal origin of the ribs as revealed by extirpation and transplantation experiments in chick and quail embryos. Development, 125, 3437–3443.Google Scholar
  63. Kaul, A., Köster, M., Neuhaus, H., & Braun, T. (2000). Myf-5 revisited: Loss of early myotome formation does not lead to a rib phenotype in homozygous Myf-5 mutant mice. Cell, 102, 17–19.Google Scholar
  64. Kawashima-Ohya, Y., Narita, Y., Nagashima, H., Usuda, U., & Kuratani, S. (2011). Hepatocyte growth factor is crucial for development of the carapace in turtles. Evolution & Development, 13, 260–268.Google Scholar
  65. Khokha, M. K., Hsu, D., Brunet, L. J., Dionne, M. S., & Harland, R. M. (2003). Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nature Genetics, 34, 303–307.Google Scholar
  66. Kieny, M., & Chevallier, A. (1979). Autonomy of tendon development in the embryonic chick wing. Journal of Embryology & Experimental Morphology, 49, 153–165.Google Scholar
  67. Koseki, H., Wallin, J., Wilting, J., Mizutani, Y., Kispert, A., Ebensperger, C., et al. (1993). A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development, 119, 649–660.Google Scholar
  68. Kuraku, S., Usuda, R., and Kuratani, S. (2005). Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evolution & Development, 7, 3–17.Google Scholar
  69. Kuratani, S. (2009). Modularity, comparative embryology and evo-devo: Developmental dissection of evolving body plans. Developmental Biology, 332, 61–69.Google Scholar
  70. Kuratani, S., Kuraku, S., & Nagashima, H. (2011). Evolutionary developmental perspective for the origin of the turtles: The folding theory for the shell based on the developmental nature of the carapacial ridge. Evolution & Development, 13, 1–14. Google Scholar
  71. Kusakabe, R., & Kuratani, S. (2005). Evolution and developmental patterning of the vertebrate skeletal muscles: Perspectives from the lamprey. Developmental Dynamics, 234, 824–834.Google Scholar
  72. Kusakabe, R., & Kuratani, S. (2007). Evolutionary perspectives from development of mesodermal components in the lamprey. Developmental Dynamics, 236, 410–420.Google Scholar
  73. Leitges, M., Neidhardt, L., Haenig, B., Herrmann, B. G., & Kispert, A. (2000). The paired homeobox gene Uncx4.1 specifies pedicles transverse processes and proximal ribs of the vertebral column. Development, 127, 2259–2267.Google Scholar
  74. Li, C., Wu, X., Rieppel, O., Wang, L., & Zhao, L. (2008). An ancestral turtle from the Late Triassic of southwestern China. Nature, 45, 497–501.Google Scholar
  75. Loredo, G. A., Brukman, A., Harris, M. P., Kagle, D., Leclair, E. E., Gutman, R., et al. (2001). Development of an evolutionarily novel structure: Fibroblast growth factor expression in the carapacial ridge of turtle embryos. Journal of Experimental Zoology, 291B, 274–281.Google Scholar
  76. Mansouri, A., Voss, A. K., Thomas, T., Yokota, Y., & Gruss, P. (2000). Uncx4.1 is required for the formation of the pedicles and proximal ribs and acts upstream of Pax-9. Development, 127, 2251–2258.Google Scholar
  77. Matsuoka, T., Ahlberg, P. E., Kessaris, N., Iannarelli, P., Dennehy, U., Richardson, W., et al. (2005). Neural crest origins of the neck and shoulder. Nature, 436, 347–355.Google Scholar
  78. Monga, S. P., Mars, W. M., Pediaditakis, P., Bell, A., Mulé, K., Bowen, W. C., et al. (2002). Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Research, 62, 2064–2071.Google Scholar
  79. Moustakas, J. E. (2008). Development of the carapacial ridge: Implications for the evolution of genetic networks in turtle shell development. Evolution & Development, 10, 29–36.Google Scholar
  80. Müller, T. S., Ebensperger, C., Neubuser, A., Koseki, H., Balling, R., Christ, B., et al. (1996). Expression of avian Pax1 and Pax9 is intrinsically regulated in the pharyngeal endoderm, but depends on environmental influences in the paraxial mesoderm. Developmental Biology, 178, 403–417.Google Scholar
  81. Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I., & Nabeshima, Y. (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 364, 532–535.Google Scholar
  82. Nagashima, H., Uchida, K., Yamamoto, K., Kuraku, S., Usuda, R., & Kuratani, S. (2005). Turtle–chicken chimera: An experimental approach to understanding evolutionary innovation in the turtle. Developmental Dynamics, 232, 149–161.Google Scholar
  83. Nagashima, H., Kuraku, S., Uchida, K., Ohya, Y. K., Narita, Y., & Kuratani, S. (2007). On the carapacial ridge in turtle embryos: Its developmental origin, function, and the chelonian body plan. Development, 134, 2219–2226.Google Scholar
  84. Nagashima, H., Sugahara, F., Takechi, M., Ericsson, R., Kawashima-Ohya, Y., Narita, Y., et al. (2009). Evolution of the turtle body plan by the folding and creation of new muscle connections. Science, 325, 193–196.Google Scholar
  85. Nelson, W. J., and Nusse, R. 2004. Convergence of Wnt, β-catenin, and cadherin pathways. Science, 303, 1483–1487.Google Scholar
  86. Novak, A., and Dedhar, S. (1999). Signaling through β-catenin and Lef/Tcf. Cellular and Molecular Life Sciences, 56, 523–537.Google Scholar
  87. Ogushi, K. (1911). Anatomische Studien an der japanischen dreikralligen Lippenschildkröte (Trionyx japonicus). Morphologisches Jahrbuch, 43, 1–106.Google Scholar
  88. Ohuchi, H., Nakagawa, T., Yamamoto, A., Araga, A., Ohata, T., Ishimaru, Y., et al. (1997). The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interactions with FGF8, an apical ectodermal factor. Development, 124, 2235–2244.Google Scholar
  89. Ohya, Y. K., Usuda, R., Kuraku, S., Nagashima, H., & Kuratani, S. (2006). Unique features of Myf-5 in turtles: Nucleotide deletion, alternative splicing and unusual expression pattern. Evolution & Development, 8, 415–423.Google Scholar
  90. Olivera-Martinez, I., Coltey, M., Dhouailly, D., & Pourqui, O. (2000). Mediolateral somitic origin of ribs and dermis determined by quail-chick chimeras. Development, 127, 4611–4617.Google Scholar
  91. Olson, E. N., Arnold, H.-H., Rigby, P. W. J., & Wold, B. J. (1996). Know your neighbors: Three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell, 85, 1–4.Google Scholar
  92. Patapoutian, A., Yoon, J. K., Miner, J. H., Wang, S., Stark, K., & Wold, B. (1995). Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development, 121, 3347–3358.Google Scholar
  93. Peters, H., Doll, U., & Niessing, J. (1995). Differential expression of the chicken Pax-1 and Pax-9 gene. In situ hybridization and immunohistochemical analysis. Developmental Dynamics, 203, 1–16.Google Scholar
  94. Pinot, M. (1969). Etude expérimentale de la morphogenése de la cage thoracique chez l’embryon de poulet: mécanismes et origine du matériel. Journal of Embryology & Experimental Morphology, 21, 149–164.Google Scholar
  95. Pizette, S., Abate-Shen, C., & Niswander, L. (2001). BMP controls proximodistal outgrowth, via induction of the apical ectodermal ridge, and dorsoventral patterning in the vertebrate limb. Development, 128, 4463–4474.Google Scholar
  96. Rasola, A., Fassetta, M., De Bacco, F., D’Alessandro, L., Gramaglia, D., Di Renzo, M. F., et al. (2007). A positive feedback loop between hepatocyte growth factor receptor and β-catenin sustains colorectal cancer cell invasive growth. Oncogene, 26, 1078–1087.Google Scholar
  97. Rickmann, M., & Fawcett, J. W. (1985). The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. Journal of Embryology & Experimental Morphology, 90, 437–455. Google Scholar
  98. Rieppel, O. (2001). Turtles as hopeful monsters. BioEssays, 23, 987–991.Google Scholar
  99. Romer, A. S. (1956). Osteology of the reptiles. Chicago: University of Chicago Press.Google Scholar
  100. Romer, A. S., & Parsons, T. S. (1977). The vertebrate body. Philadelphia: Saunders.Google Scholar
  101. Ros, M. A., Lyons, G., Kosher, R. A., Upholt, W. B., Coelho, C. N., & Fallon, J. F. (1992). Apical ridge dependent and independent mesodermal domains of GHox-7 and GHox-8 expression in chick limb buds. Development, 116, 811–818.Google Scholar
  102. Ruckes, H. (1929). Studies in chelonian osteology. Part II. The morphological relationships between the girdles, ribs and carapace. Annals of the New York Academy of Sciences, 31, 81–120.Google Scholar
  103. Rudnicki, M. A., Braun, T., Hinuma, S., & Jaenisch, R. (1992). Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell, 71, 383–390.Google Scholar
  104. Rudnicki, M. A., Schnegelsberg, P. N., Stead, R. H., Braun, T., Arnold, H. H., & Jaenisch, R. (1993). MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 75, 1351–1359.Google Scholar
  105. Sánchez-Villagra, M. R., Müller, H., Sheil, C. A., Scheyer, T. M., Nagashima, H., & Kuratani, S. (2009). Skeletal development in the Chinese soft-shelled turtle Pelodiscus sinensis (Testudines: Trionychidae). Journal of Morphology, 270, 1381–1399.Google Scholar
  106. Saunders, J. W., Jr., (1948). The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. Journal of Experimental Zoology, 108, 363–403.Google Scholar
  107. Saunders, J. W., Jr., & Gasseling, M. (1968). Ectodermal-mesenchymal interactions in the origin of limb symmetry. In R. Fleischmayer & R. E. Billingham (Eds.), Epithelial-Mesenchymal Interaction (pp. 78–97). Baltimore: Williams and Wilkins.Google Scholar
  108. Saunders, J. W. Jr., & Reuss, C. (1974). Inductive and axial properties of prospective wing-bud mesoderm in the chick embryo. Developmental Biology, 38, 41–50.Google Scholar
  109. Scaal, M., & Christ B. (2004). Formation and differentiation of the avian dermomyotome. Anatomy and Embryology, 208, 411–424.Google Scholar
  110. Seno, T. (1961). An experimental study on the formation of the body wall in the chick. Acta Anatomica, 45, 60–82.Google Scholar
  111. Sensenig, E. C. (1949). The early development of the human vertebral column. Contributions to Embryology, 33, 23–40.Google Scholar
  112. Shellswell, G. B., & Wolpert, L. (1977). The pattern of muscle and tendon development in the chick wing. In D. A. Ede, J. R. Hincliffe, & M. Balls (Eds.), Vertebrate limb and somite morphogenesis (pp. 71–86). Cambridge: Cambridge University Press.Google Scholar
  113. Shimomura, Y., Agalliu, D., Vonica, A., Luria, V., Wajid, M., Baumer, A., et al. (2010). APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature, 464, 1043–1047.Google Scholar
  114. Soriano, P. (1997). The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development, 124, 2691–2700.Google Scholar
  115. Sudo H, Takahashi Y, Tonegawa A, Arase Y, Aoyama H, Mizutani-Koseki Y, et al. (2001). Inductive signals from the somatopleure mediated by bone morphogenetic proteins are essential for the formation of the sternal component of avian ribs. Developmental Biology, 232, 284–300.Google Scholar
  116. Summerbell, D., Lewis, J. H., & Wolpert, L. (1973). Positional information in chick limb morphogenesis. Nature, 224, 492–496.Google Scholar
  117. Sweeney, R. M., & Watterson, R. L. (1969). Rib development in chick embryos analyzed by means of tantalum foil blocks. American Journal of Anatomy, 126, 127–150.Google Scholar
  118. Tabin, C., & Wolpert, L. (2007). Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes & Development, 21, 1433–1442.Google Scholar
  119. Takahashi, M., Fujita, M., Furukawa, Y., Hamamoto, R., Shimokawa, T., Miwa, N., et al. (2002). Isolation of a novel human gene, APCDD1, as a direct target of the β-catenin/T-cell factor 4 complex with probable involvement in colorectal carcinogenesis. Cancer Research, 62, 5651–5656.Google Scholar
  120. Takahashi, M., Nakamura, Y., Obama, K., & Furukawa, Y. (2005). Identification of SP5 as a downstream gene of the β-catenin/Tcf pathway and its enhanced expression in human colon cancer. International Journal of Oncology, 27, 1483–1487.Google Scholar
  121. Tallquist, M.D., Weismann, K.E., Hellström, M., & Soriano, P. (2000). Early myotome specification regulates PDGFA expression and axial skeleton development. Development, 127, 5059–5070.Google Scholar
  122. Theißen, G. (2006). The proper place of hopeful monsters in evolutionary biology. Theory in Biosciences, 124, 349–369.Google Scholar
  123. Theißen, G. (2009). Saltational evolution: Hopeful monsters are here to stay. Theory in Biosciences, 128, 43–51.Google Scholar
  124. Tokita, M., & Kuratani, S. (2001). Normal embryonic stages of the Chinese softshelled turtle Pelodiscus sinensis. Zoological Sciences, 18, 705–715.Google Scholar
  125. Tremblay, P., Dietrich, S., Mericskay, M., Scubert, F.R., Li, Z., & Paulin, D. (1998). A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Developmental Biology, 203, 49–61.Google Scholar
  126. Valasek, P., Theis, S., Krejci, E., Grim, M., Maina, F., Shwartz, Y., et al. (2010). Somitic origin of the medial border of the mammalian scapula and its homology to the avian scapula blade. Journal of Anatomy, 216, 482–488.Google Scholar
  127. Vasyutina, E. & Birchmeier, C. (2006). The development of migrating muscle precursor cells. Anatomy and Embryology, 211, S37–S41.Google Scholar
  128. Verbout, A. J. (1985). The development of the vertebral column. Advances in Anatomy, Embryology and Cell Biology, 90, 1–122.Google Scholar
  129. Vinagre, T., Moncaut, N., Carapuço, M., Nóvoa, A., Bom, J., & Mallo, M. (2010). Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Developmental Cell, 18, 655–661.Google Scholar
  130. Vincent, C., Bontoux, M., Le Douarin, N. M., Pieau, C., & Monsoro-Burq, A.H. (2003). Msx genes are expressed in the carapacial ridge of turtle shell: A study of the European pond turtle, Emys orbicularis. Development Genes and Evolution, 213, 464–469.Google Scholar
  131. Walker, W. F, Jr. (1947). The development of the shoulder region of the turtle, Chrysemys picta marginata, with special reference to the primary musculature. Journal of Morphology, 80, 195–249.Google Scholar
  132. Wallin, J., Wilting, J., Koseki, H., Fitsch, R., Christ, B., & Balling, R., (1994). The role of Pax-1 in axial skeleton development. Development, 120, 1109–1121.Google Scholar
  133. Wang, B., He, L., Ehehalt, F., Geetha-Loganathan, P., Nimmagadda, S., Christ, B., et al. (2005). The formation of the avian scapula blade takes place in the hypaxial domain of the somites and requires somatopleure-derived BMP signals. Developmental Biology, 287, 11–18.Google Scholar
  134. Watson, D. S. M. (1914). Eunotosaurus africanus Seeley and the ancestors of the Chelonia. Proceedings of the Zoological Society of London, 11, 1011–1020.Google Scholar
  135. Weidinger, G., Thorpe, C. J., Wuennenberg-Stapleton, K., Ngai, J., & Moon, R. T. (2005). The Sp1-related transcription factors sp5 and sp5-like act downstream of Wnt/β-catenin signaling in mesoderm and neuroectoderm patterning. Current Biology, 15, 489–500.Google Scholar
  136. Winslow, B. B., Takimoto-Kimura, R., & Burke, A. C. (2007). Global patterning of the vertebrate mesoderm. Developmental Dynamics, 236, 2371–2381.Google Scholar
  137. Winter, B., Braun, T., & Arnold, H.-H. (1992). Co-operativity of functional domains in the muscle-specific transcription factor Myf-5. EMBO Journal, 11, 1843–1855.Google Scholar
  138. Yntema, C. L. (1970). Extirpation experiments on the embryonic rudiments of the carapace of Chelydra serpentina. Journal of Morphology, 132, 235–244.Google Scholar
  139. Yokouchi, Y., Ohsugi, K., Sasaki, H., & Kuroiwa, A. (1991). Chicken homeobox gene Msx-1: Structure, expression in limb buds and effect of retinoic acid. Development, 113, 431–444.Google Scholar
  140. Yoon, J. K., Olson, E. N., Arnold, H. H., & Wold, B. J. (1997). Different MRF4 knockout alleles differentially disrupt Myf-5 expression: cis-regulatory interactions at the MRF4/Myf-5 locus. Developmental Biology, 188, 349–362.Google Scholar
  141. Zhang, W., Behringer, R. R., & Olson, E. N. (1995). Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes & Development, 9, 1388–1399.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Hiroshi Nagashima
    • 1
  • Shigehiro Kuraku
    • 1
  • Katsuhisa Uchida
    • 1
  • Yoshie Kawashima-Ohya
    • 1
  • Yuichi Narita
    • 1
  • Shigeru Kuratani
    • 1
    Email author
  1. 1.Laboratory for Evolutionary MorphologyRIKEN Center for Developmental BiologyKobeJapan

Personalised recommendations