Morphological Variation in the Carapace and Plastron of Terrapenecoahuila Schmidt and Owens 1944

  • Robert W. Burroughs
  • Christopher J. Bell
  • Travis J. LaDuc
  • Dean A. Hendrickson
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Terrapene coahuila is one of four extant species of North American box turtles. It is restricted in distribution to the Cuatro Ciénegas Basin in Coahuila, México. Results of previous examinations of extant T. carolina and T. ornata revealed relatively high levels of morphological variation, but morphological studies of T. coahuila are rare, and data on skeletal morphology are limited. We examined 214 skeletal specimens of T. coahuila and documented variation in 51 mensurative and discrete characters of the carapace and plastron. Overall levels of variation are low, as predicted by previously documented levels of gene flow between the sub-populations of the species. However, significant polymorphism is present in the positions of the anterior and posterior sulci of the fourth vertebral scute and the configuration of neural bones 2, 3, and 7. Additionally, co-ossification of the carapacial bones varies substantially within the sample, but independently of carapace length. Genetic, epigenetic, and environmental controls for those features are not known. In addition to documenting skeletal morphology within T. coahuila, we provide new perspectives on patterns of variation within Terrapene, and contribute data that should help paleontologists to establish more rigorous criteria for the identification of fossil specimens of North American box turtles. Those data will be especially important for critical evaluation of recently discovered early and middle Tertiary fossils that are yielding new insights into the evolution of box turtles and the modernization of the turtle biota.

Keywords

Box turtle Cuatro Ciénegas Basin Emydidae Polymorphism Variation 

Notes

Acknowledgments

We gratefully acknowledge Jennifer Howeth for her efforts to collect and preserve skeletal specimens of Terrapene coahuila during her field research in Cuatro Ciénegas. Her research and, by extension, ours, was conducted under SEMARNAT permits 3054 and 5573, and CITES permits 072019 and 140459. At the time these specimens were collected Susana Moncada Díaz de León was Director of the Area Protegida de Fauna y Flora de Cuatro Ciénegas; she granted local permission to sample within the reserve, greatly facilitated coordination with landowners in the basin, and provided additional staff assistance in the field. We acknowledge Christopher Eckert for his efforts in collecting measurement data for our specimens. This chapter was improved substantially as a result of comments from our colleagues Robert Holmes, Chris Jass, and Walter Joyce; their careful reviews helped clarify our thinking and presentation. Whether he likes it or not, Gene Gaffney helped to inspire us in our continued efforts to understand the evolutionary history of emydid turtles, perhaps one of his least favored groups of Testudines.

References

  1. Angielczyk, K. D., Feldman, C. R., & Miller, G. R. (2011). Adaptive evolution of plastron shape in emydine turtles. Evolution, 65, 377–394.CrossRefGoogle Scholar
  2. Auffenberg, W. (1958). Fossil turtles of the genus Terrapene in Florida. Bulletin of the Florida State Museum, Biological Sciences, 3, 53–92.Google Scholar
  3. Auffenberg, W. (1967). Further notes on fossil box turtles of Florida. Copeia, 1967, 319–325.CrossRefGoogle Scholar
  4. Barbour, T., & Stetson, H. C. (1931). A revision of the Pleistocene species of Terrapene of Florida. Bulletin of the Museum of Comparative Zoology, 72, 295–299.Google Scholar
  5. Baur, G. (1891). American box-tortoises. Science, 17, 190–191.Google Scholar
  6. Bell, C. J., Gauthier, J. A., & Bever, G. S. (2010). Covert biases, circularity, and apomorphies: A critical look at the North American Quaternary Herpetofuanal Stability Hypothesis. Quaternary International, 217, 30–36.CrossRefGoogle Scholar
  7. Bentley, C. C., & Knight, J. L. (1998). Turtles (Reptilia: Testudines) of the Ardis local fauna late Pleistocene (Rancholabrean) of South Carolina. Brimleyana, 25, 3–33.Google Scholar
  8. Bever, G. S., Bell, C. J., & Hutchison, J. H. (2003). Hinged emydine turtles in North America: Reading the record. Journal of Vertebrate Paleontology, 23(Suppl. 3), 34A.Google Scholar
  9. Bickham, J. W., Lamb, T., Minx, P., & Patton, J. C. (1996). Molecular systematics of the genus Clemmys and the intergeneric relationships of emydid turtles. Herpetologica, 52, 89–97.Google Scholar
  10. Blaney, R. M. (1971). An annotated check list and biogeographic analysis of the insular herpetofauna of the Apalachicola region, Florida. Herpetologica, 27, 406–430.Google Scholar
  11. Bonin, F., Devaux, B., & Dupré, A. (2006). Turtles of the World (P. C. H. Pritchard, Trans.). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  12. Brown, W. S. (1971). Morphometrics of Terrapene coahuila (Chelonia, Emydidae), with comments on its evolutionary status. Southwestern Naturalist, 16, 171–184.CrossRefGoogle Scholar
  13. Brown, W. S. (1974). Ecology of the aquatic box turtle, Terrapene coahuila (Chelonia, Emydidae) in northern Mexico. Bulletin of the Florida State Museum Biological Sciences, 19, 1–65.Google Scholar
  14. Burke, R. L., Leuteritz, T. E., & Wolf, A. J. (1996). Phylogenetic relationships of emydine turtles. Herpetologica, 52, 572–584.Google Scholar
  15. Dodd, C. K., Jr. (2001). North American box turtles: A natural history. Norman, OK: University of Oklahoma Press.Google Scholar
  16. Feldman, C. R., & Parham, J. F. (2002). Molecular phylogenetics of emydine turtles: Taxonomic revision and the evolution of shell kinesis. Molecular Phylogenetics and Evolution, 22, 388–398.CrossRefGoogle Scholar
  17. Gaffney, E. S., & Meylan, P. A. (1988). A phylogeny of turtles. In M. J. Benton (Ed.), The phylogeny and classification of tetrapods, volume 1: Amphibians, reptiles, birds (pp. 157–219). Oxford: Systematics Association Special Volume, Clarendon Press.Google Scholar
  18. Hay, O. P. (1906). Descriptions of two new genera (Echmatemys and Xenochelys) and two new species (Xenochelys formosa and Terrapene putnami) of fossil turtles. Bulletin of the American Museum of Natural History, 22, 27–31.Google Scholar
  19. Hay, O. P. (1908). Descriptions of five species of North American fossil turtles, four of which are new. Proceedings of the United States National Museum, 35, 161–169 (Plates 26–27).Google Scholar
  20. Hirayama, R. (1985) (“1984”). Cladistic analysis of batagurine turtles (Batagurinae: Emydidae: Testudinoidea); A preliminary result. In F. de Broin & E. Jiménez-Fuentes (Eds.), Stvdia Palaeocheloniologica I. Communicaciones del I Simposium Internacional sobre Quelonios Fosiles, París, Octubre, 1983 Stvdia Geologica Salmanticensia Volumen Especial I (pp. 141–157). Ediciones Universidad de Salamanca.Google Scholar
  21. Holman, J. A. (1975). Herpetofauna of the Wakeeney local fauna (Lower Pliocene: Clarendonian) of Trego County, Kansas. In G. R. Smith & N. E. Friedland (Eds.), Studies on Cenozoic paleontology and stratigraphy in honor of Claude W. Hibbard memorial (Vol. 3, pp. 49–66). The Museum of Paleontology, University of Michigan, Papers on Paleontology, 12.Google Scholar
  22. Holman, J. A. (1987). Herpetofauna of the Egelhoff site (Miocene: Barstovian) of north-central Nebraska. Journal of Vertebrate Paleontology, 7, 109–120.CrossRefGoogle Scholar
  23. Holman, J. A. (1995). A new species of Emydoidea (Reptilia: Testudines) from the late Barstovian (medial Miocene) of Cherry County, Nebraska. Journal of Herpetology, 29, 548–553.CrossRefGoogle Scholar
  24. Holman, J. A. (2002). Additional specimens of the Miocene turtle Emydoidea hutchisoni Holman 1995—new temporal occurrences, taxonomic characters, and phylogenetic inferences. Journal of Herpetology, 36, 436–446.Google Scholar
  25. Holman, J. A., & Corner, R. G. (1985). A Miocene Terrapene (Testudines: Emydidae) and other Barstovian turtles from south-central Nebraska. Herpetologica, 41, 88–93.Google Scholar
  26. Holman, J. A., & Fritz, U. (2005). The box turtle genus Terrapene (Testudines: Emydidae) in the Miocene of the USA. Herpetological Journal, 15, 81–90.Google Scholar
  27. Holroyd, P. A., Hutchison, J. H., & Strait, S. G. (2001). Turtle diversity and abundance through the lower Eocene Willwood Formation of the southern Bighorn Basin. In P. D. Gingerich (Ed.), Paleocene–Eocene stratigraphy and biotic change in the Bighorn and Clarks Fork Basins, Wyoming (pp. 97–107). University of Michigan Papers in Paleontology, 33.Google Scholar
  28. Howeth, J. G., McGaugh, S. E., & Hendrickson, D. A. (2008). Contrasting demographic and genetic estimates of dispersal in the endangered Coahuilan box turtle: A contemporary approach to conservation. Molecular Ecology, 17, 4209–4221.CrossRefGoogle Scholar
  29. Hutchison, J. H. (1981). Emydoidea (Emydidae: Testudines) from the Barstovian (Miocene) of Nebraska. PaleoBios, 37, 1–6.Google Scholar
  30. Hutchison, J. H. (1992). Western North American reptile and amphibian record across the Eocene/Oligocene boundary and its climatic implications. In D. R. Protehro & W. A. Berggren (Eds.), Eocene–Oligocene climatic and biotic evolution (pp. 451–463). Princeton, NJ: Princeton University Press.Google Scholar
  31. Hutchison, J. H. (1998). Turtles across the Paleocene/Eocene epoch boundary in west-central North America. In M.-P. Aubry, S. G. Lucas, & W. A. Berggren (Eds.), Late Paleocene–Early Eocene climatic and biotic events in the marine and terrestrial records (pp. 401–408). New York: Columbia University Press.Google Scholar
  32. Jass, C. N., & Bell, C. J. (2010). Desert tortoises (Gopherus agassizii) from Pleistocene sediments in Cathedral Cave, White Pine County, Nevada. The Southwestern Naturalist, 55, 558–563.CrossRefGoogle Scholar
  33. Joyce, W. G., & Bell, C. J. (2004). A review of the comparative morphology of extant testudinoid turtles (Reptilia: Testudines). Asiatic Herpetological Research, 10, 53–109.Google Scholar
  34. Knauss, G. E., Joyce, W. G., Lyson, T. R., & Pearson, D. (2011). A new kinosternoid from the Late Cretaceous Hell Creek Formation of North Dakota and Montana and the origin of the Dermatemys mawii lineage. Paläontologische Zeitschrift, 85, 125–142.CrossRefGoogle Scholar
  35. Legler, J. M. (1960). Natural history of the ornate box turtle, Terrapene ornata Agassiz. University of Kansas Publication of the Museum of Natural History, 11, 527–669.Google Scholar
  36. Milstead, W. M. (1956). Fossil turtles of Friesenhahn Cave, Texas, with the description of a new species of Testudo. Copeia, 1956, 162–171.CrossRefGoogle Scholar
  37. Milstead, W. M. (1960). Relict species of the Chihuahuan Desert. Southwestern Naturalist, 5, 75–88.CrossRefGoogle Scholar
  38. Milstead, W. M. (1967). Fossil box turtles (Terrapene) from central North America, and box turtles of eastern Mexico. Copeia, 1967, 168–179.CrossRefGoogle Scholar
  39. Milstead, W. M. (1969). Studies on the evolution of box turtles (genus Terrapene). Bulletin of the Florida State Museum, Biological Sciences, 14, 1–113.Google Scholar
  40. Minx, P. (1996). Phylogenetic relationships among the box turtles, genus Terrapene. Herpetologica, 52, 584–597.Google Scholar
  41. Moodie, K. B., & Van Devender, T. R. (1977). Additional late Pleistocene turtles from Jones Spring, Hickory County, Missouri. Herpetologica, 33, 87–90.Google Scholar
  42. Parmley, D. (1992). Turtles from the late Hemphillian (latest Miocene) of Knox County, Nebraska. Texas Journal of Science, 44, 339–348.Google Scholar
  43. Pritchard, P. C. H. (1988). A survey of neural bone variation among recent chelonian species, with functional interpretations. Acta Zoologica Cracoviensia, 31, 625–686.Google Scholar
  44. Schmidt, K. P., & Owens, D. W. (1944). Amphibians and reptiles of northern Coahuila, Mexico. Zoological Series of Field Museum of Natural History, 29, 97–115.Google Scholar
  45. Spinks, P. Q., Thomson, R. C., Lovely, G. A., & Shaffer, H. B. (2009). Assessing what is needed to resolve a molecular phylogeny: Simulations and empirical data from emydid turtles. BMC Evolutionary Biology, 9, 1–17. doi: 10.1186/1471-2148-9-56.
  46. Tong, H., Zhang, J.-Y., & Li, J.-J. (2010). Anosteria maomingensis (Testudines: Carettochelyidae) from the Late Eocene of Maoming, Guangdong, southern China: New material and re-description. Neues Jahrbuch für Geologie und Paläontologie, 256, 279–290.CrossRefGoogle Scholar
  47. Webb, R. G., Minckley, W. L., & Craddock, J. E. (1963). Remarks on the Coahuilan box turtle, Terrapene coahuila (Testudines, Emydidae). Southwestern Naturalist, 8, 89–99.CrossRefGoogle Scholar
  48. Weems, R. E. (1988). Paleocene turtles from the Aquia and Brightseat Formations, with a discussion of their bearing on sea turtle evolution and phylogeny. Proceedings of the Biological Society of Washington, 101, 109–145.Google Scholar
  49. Wiens, J. J., Kuczynski, C. A., & Stephens, P. R. (2010). Discordant mitochondrial and nuclear gene phylogenies in emydid turtles: Implications for speciation and conservation. Biological Journal of the Linnean Society, 99, 445–461.CrossRefGoogle Scholar
  50. Williams, K. L., Smith, H. M., & Chrapliwy, P. S. (1960). Turtles and lizards from northern Mexico. Transactions of the Illinois Academy of Science, 53, 36–45.Google Scholar
  51. Yasukawa, Y., Hirayama, R., & Hikida, T. (2001). Phylogenetic relationships of geoemydine turtles (Reptilia: Bataguridae). Current Herpetology, 20, 105–133.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Robert W. Burroughs
    • 1
  • Christopher J. Bell
    • 1
  • Travis J. LaDuc
    • 2
  • Dean A. Hendrickson
    • 2
  1. 1.Jackson School of GeosciencesThe University of TexasAustinUSA
  2. 2.Texas Natural Science CenterThe University of TexasAustinUSA

Personalised recommendations