Skip to main content

Morphology and Relationships of Brachyopsemys tingitana gen. et sp. nov. from the Early Paleocene of Morocco and Recognition of the New Eucryptodiran Turtle Family: Sandownidae

  • Chapter
  • First Online:
Morphology and Evolution of Turtles

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

The first cryptodiran turtle with a pitted palate, Brachyopsemys tingitana gen. et sp. nov., is described on the basis of skulls and a lower jaw from the early Paleocene (Danian) of the Ouled Abdoun Basin, Morocco. The new taxon shares a number of apomorphic features with Sandownia harrisi from the Aptian of the Isle of White, England, Angolachelys mbaxi from the Turonian of Angola, and an unnamed turtle from the Albian Glen Rose Formation in Texas. A phylogenetic analysis provides evidence that they form a monophyletic clade which we name the Sandownidae fam. nov. The phylogenetic relationships of Sandownidae are problematic. Their affinities among the Eucryptodira remain uncertain; a well-preserved shell of a member of the family may be useful in determining relationships. The family appears to be a bottom-dwelling group that occurred in near-shore marine environments along the coast of the Atlantic across the Cretaceous-Tertiary boundary. Its evolutionary history is connected to the development of the Atlantic Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barck, A. (1992). Paleontology of the Glen Rose Formation (Lower Cretaceous), Hood Country, Texas. The Texas Journal of Science, 44, 3–24.

    Google Scholar 

  • Brinkman, D. B., & Peng, J.-H. (1996). A new species of Zangerlia (Testudines: Nanhsiungchelyidae) from the Upper Cretaceous redbeds at Bayan Mandahu, Inner Mongolia, and the relationships of the genus. Canadian Journal of Earth Sciences, 33, 526–540.

    Article  Google Scholar 

  • Dalrymple, G. H. (1977). Intraspecific variation in the cranial feeding mechanism of turtles of the genus Trionyx (Reptilia, Testudines, Trionychidae). Journal of Herpetology, 11, 255–285.

    Article  Google Scholar 

  • Danilov, I. G., & Parham, J. F. (2005). A reassessment of the referral of an isolated skull from the Late Cretaceous of Uzbekistan to the stem-testudinoid turtle genus Lindholmemys. Journal of Vertebrate Paleontology, 25, 784–791.

    Article  Google Scholar 

  • Evans, J., & Kemp, T. S. (1975). The cranial morphology of a new Lower Cretaceous turtle from southern England. Palaeontology, 18, 25–40.

    Google Scholar 

  • Evans, J., & Kemp, T. S. (1976). A new turtle skull from the Purbeckian of England and a note on the early dichotomies of cryptodiran turtles. Palaeontology, 19, 317–324.

    Google Scholar 

  • Fujita, M. K., Engstrom, T. N., Starkey, D. E., & Shaffer, H. B. (2004). Turtle phylogeny: Insights from a novel nuclear intron. Molecular Phylogenetics and Evolution, 31, 1031–1040.

    Article  Google Scholar 

  • Gaffney, E. S. (1975). Solnhofia parsonsi, a new Cryptodiran turtle from the Late Jurassic of Europe. American Museum Novitates, 2576, 1–25.

    Google Scholar 

  • Gaffney, E. S. (1976). Cranial morphology of the European Jurassic turtles Portlandemys and Plesiochelys. Bulletin of the American Museum of Natural History, 157, 489–543.

    Google Scholar 

  • Gaffney, E. S. (1979). Comparative cranial morphology of recent and fossil turtles. Bulletin of the American Museum of Natural History, 164, 67–376.

    Google Scholar 

  • Gaffney, E. S. (1990). The comparative osteology of the Triassic turtle Proganochelys. Bulletin of the American Museum of Natural History, 194, 1–263.

    Google Scholar 

  • Gaffney, E. S. (1996). The postcranial morphology of Meiolania platyceps and a review of the Meiolaniidae. Bulletin of the American Museum of Natural History, 229, 1–166.

    Google Scholar 

  • Gaffney, E. S., & Meylan, P. A. (1988). A phylogeny of turtles. In M. J. Benton (Ed.), The phylogeny and classification of the tetrapods (pp. 157–219). Oxford: Clarendon Press.

    Google Scholar 

  • Gaffney, E. S., & Meylan, P. A. (1992). The Transylvanian turtle, Kallokibotion, a primitive Cryptodire of Cretaceous age. American Museum Novitates, 3040, 1–37.

    Google Scholar 

  • Gaffney, E. S., Meylan, P. A., & Wyss, A. R. (1991). A computer assisted analysis of the relationships of the higher categories of turtles. Cladistics, 7, 313–335.

    Google Scholar 

  • Gaffney, E. S., & Tong, H. (2003). Phosphatochelys, a new side-necked turtle (Pelomedusoides: Bothremydidae) from the Paleocene of Morocco. Bulletin of the American Museum of Natural History, 13, 644–659.

    Article  Google Scholar 

  • Gaffney, E. S., & Zangerl, R. (1968). A revision of the chelonian genus Bothremys (Pleurodira: Pelomedusidae). Fieldiana Geology, 16, 193–239.

    Google Scholar 

  • Gaffney, E. S., Tong, H., & Meylan, P. A. (2006). Evolution of the side-necked turtles: The families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the American Museum of Natural History, 300, 1–700.

    Article  Google Scholar 

  • Hirayama, R. (1994). Phylogenetic systematics of chelonioid sea turtles. The Island Arc, 3, 270–284.

    Article  Google Scholar 

  • Hirayama, R., & Tong, H. (2003). Osteopygis (Testudines: Cheloniidae) from the Lower Tertiary of the Ouled Abdoun phosphate basin, Morocco. Palaeontology, 46, 845–856.

    Article  Google Scholar 

  • Hutchison, J. H., & Bramble, D. M. (1981). Homology of the plastral scales of the Kinosternidae and related turtles. Herpetologica, 37, 73–85.

    Google Scholar 

  • Jacobs, L. L., Mateus, O., Polcyn, M. J., Schulp, A. S., Antunes, M. T., Morais, M. L., et al. (2006). The occurence and geological setting of Cretaceous dinosaurs, mosasaurs, plesiosaurs, and turtles from Angola. Journal of Paleontological Society of Korea, 22, 91–110.

    Google Scholar 

  • Jamniczky, H. A. (2008). Turtle carotid circulation: A character analysis case study. Biological Journal of the Linnean Society, 93, 239–256.

    Article  Google Scholar 

  • Jamniczky, H. A., & Russell, A. P. (2007). Reappraisal of patterns of nonmarine Cryptodiran turtle carotid circulation: Evidence from osteological correlates and soft tissues. Journal of Morphology, 268, 571–587.

    Article  Google Scholar 

  • Joyce, W. G. (2000). The first complete skeleton of Solnhofia parsonsi (Cryptodira, Eurysternidae) from the Upper Jurassic of Germany and its taxonomic implications. Journal of Paleontology, 74, 684–700.

    Article  Google Scholar 

  • Joyce, W. G. (2007). Phylogenetic relationships of Mesozoic turtles. Bulletin of the Peabody Museum of Natural History, 48, 3–102.

    Article  Google Scholar 

  • Joyce, W. G., Chapman, S. D., Moody, R. T. J., & Walker, C. A. (2011). The skull of the solemydid turtle Helochelydra nopcsai from the Early Cretaceous of the Isle of Wight (UK) and a review of Solemydidae. Special Papers in Palaeontology, 86, 75–97

    Google Scholar 

  • Karl, H.-V., Tichy, G., & Ruschark, H. (1998). Osteopygoides priscus n. gen. n. sp. und die Taxonomie und Evolution der Osteopygidae (Testudines: Chelonioidea). Mitteilungen der Geologischen und Palaontologischen Landesmuseum Joanneum, 56, 329–350.

    Google Scholar 

  • Lyson, T. R., & Joyce, W. G. (2009). A revision of Plesiobaena (Testudines: Baenidae) and an assessment of baenid ecology across the K/T boundary. Journal of Paleontology, 83, 833–853.

    Google Scholar 

  • Mateus, O., Jacobs, L., Polcyn, M., Schulp, A. S., Vineyard, D., Neto, A. B., et al. (2009). The oldest African Eucryptodiran turtle from the Cretaceous of Angola. Acta Palaeontologica Polonica, 54, 581–588.

    Article  Google Scholar 

  • Meylan, P. A. (1987). The phylogenetic relationships of soft-shelled turtles (Family Trionychidae). Bulletin of the American Museum of Natural History, 186, 1–101.

    Google Scholar 

  • Meylan, P. A., & Gaffney, E. S. (1989). The skeletal morphology of the Cretaceous Cryptodiran turtle, Adocus, and the relationships of the Trionychoidea. American Museum Novitates, 2941, 1–60.

    Google Scholar 

  • Meylan, P. A., Moody, R. T. J., Walker, C. A., & Chapman, S. D. (2000). Sandownia harrisi, a highly derived trionychoid turtle (Testudines: Cryptodira) from the Early Cretaceous of the Isle of Wight, England. Journal of Vertebrate Paleontology, 20, 522–532.

    Article  Google Scholar 

  • Near, T. J., Meylan, P. A., & Shaffer, H. B. (2005). Assessing concordance of fossil calibration points in molecular clock studies: An example using turtles. The American Naturalist, 165, 137–146.

    Article  Google Scholar 

  • Nessov, L. A. (1977). Skull morphology of the Early Cretaceous turtle belonging to the family Adocidae. Trudy Zoologicheskogo Instituta AN SSSR, 74, 75–79.

    Google Scholar 

  • Nessov, L. A. (1986). Some Late Mesozoic and Paleocene turtles of Soviet Middle Asia. Studia Geologica Salamanticensia, volumen Especial 2. Studia Palaeocheloniologica, 2, 7–22.

    Google Scholar 

  • Nessov, L. A. (1987). The Paleogene sea turtles of southern Kazakhstan and the phylogenetic relationships between the Toxochelyidae and the Cheloniidae. Palaeontological Journal, 4, 76–87.

    Google Scholar 

  • Nour-Eddine, J., de Lapparent de Broin, F., Bardet, N., Vacant, R., Bouya, B., Amaghzazc, M., & Meslouh, S. (2009). Euclastes acutirostris, a new species of littoral turtle (Cryptodira, Cheloniidae) from the Palaeocene phosphates of Morocco (Oulad Abdoun Basin, Danian-Thanetian). Compte Rendu Palevol, 8, 447–459.

    Google Scholar 

  • Rieppel, O. (1980). The skull of the Upper Jurassic cryptodire turtle Thalassemys, with a reconsideration of the chelonian braincase. Palaeontographica, 171, 105–140.

    Google Scholar 

  • Schumacher, G.-H. (1973). The head muscles and hyolaryngeal skeleton of turtles and crocodilians. In: C. Gans & T. S. Parsons (Eds.), Biology of the Reptilia (pp. 101–199). London, New York: Academic Press.

    Google Scholar 

  • Shaffer, H. B., Meylan, P. A., & McKnight, M. L. (1997). Tests of turtle phylogeny: Molecular, morphological, and paleontological approches. Systematic Biology, 46, 235–268.

    Article  Google Scholar 

  • Smith, A. G., Smith, D. G., & Funnell, B. M. (1994). Atlas of Mesozoic and Cenozoic coastlines. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tong, H., & Hirayama, R. (2002). A new species of Tasbacka (Testudines: Cryptodira: Cheloniidae) from the Paleocene of the Ouled Abdoun phosphate basin, Morocco. Neues Jarrbuch fur Geologie und Palaeontologie, Monatsheft, 2002, 277–294.

    Google Scholar 

  • Tong, H., & Hirayama, R. (2004). First Cretaceous dermochelyid turtle from Africa. Revue de PalĂ©obiologie, spĂ©cial, 9, 55–59.

    Google Scholar 

  • Tong, H., & Hirayama, R. (2008). A new species of Argillochelys (Testudines: Cryptodira: Cheloniidae) from the Ouled Abdoun phosphate basin, Morocco. Bulletin de la SociĂ©tĂ© GĂ©ologique de France, 179, 623–630.

    Article  Google Scholar 

  • Tong, H., Hirayama, R., & Tabouelle, J. (in press). Puppigerus camperi (Testudines: Cryptodira: Cheloniidae) from the Ypresian (Early Eocene) of Ouled Abdoun Basin, Morocco. Bulletin de la SociĂ©tĂ© GĂ©ologique de France.

    Google Scholar 

  • Tong, H., Zhang, J.-Y., & Li, J.-J. (2010). Anosteira maomingensis (Testudines: Carettochelyidae) from the Late Eocene of Maoming, Guangdong, southern China: New material and redescription. Neues Jahrbuch fĂŒr Geologie und PalĂ€ontologie Abhandlungen, 256, 279–290.

    Article  Google Scholar 

  • Vineyard, D. (1999). Turtle skulls from the Early Cretaceous of Texas. Journal of Vertebrate Paleontology, 19(Suppl. 3), 82A.

    Google Scholar 

  • Vineyard, D. P., & Jacobs, L. L. (2009). A new eucryptodiran turtle from the Mid-Cretaceous (Albian) Glen Rose Formation of Texas. Gaffney Turtle Symposium (October 17–18, 2009, Royal Tyrrell Museum, Drumheller, Canada), Abstract Volume, pp. 181–186.

    Google Scholar 

  • Ye, X.-K. (1966). A new Cretaceous turtle of Nanhsiung, northern Kwangtung. Vertebrata Palasiatica, 10, 191–200.

    Google Scholar 

  • Zangerl, R. (1953). The vertebrate fauna of the Selma Formation of Alabama. Part VI: The turtles of the Family Toxochelyidae. Fieldiana: Geology Memoirs, 3, 137–277.

    Google Scholar 

  • Zangerl, R. (1971). Two toxochelyid sea turtles from the Landenian sands of Erquelinnes (Hainaut) of Belgium. Institut Royal des Sciences Naturelles de Belgique, MĂ©moires, 169, 1–32.

    Google Scholar 

Download references

Acknowledgments

We thank F. EscuilliĂ© (Gannat) and B. Segaoui (Erfoud) for providing the specimens,; O. Mateus (Lisbon) for the data set of Angolachelys; E. S. Gaffney (New York), W. Joyce (TĂŒbingen) and R. Hirayama (Tokyo) for reviewing the manuscript; J. Pfaller (Gainesville) for discussions of the zygomaticomandibularis, and the Singer-Polygnac Fondation and Eckerd College for financial support. AMNH 30001 was prepared by J. Klausen, J. Shumsky and J. Kelly (New York). The reconstruction of the palate was produced by F. Ippolito after A. Montalvo (New York). Special thanks to Gene Gaffney for providing opportunities to forward our careers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Tong .

Editor information

Editors and Affiliations

Appendices

Appendices

Appendix 13.1

Description of Characters: the matrix used in the study is a further amended matrix based on those of Gaffney et al. (1991) (characters 1–39) and Shaffer et al. (1997) (characters 40–115). Characters 116–142 were used to place fossils in Near et al. (2005), but were not described in that paper. The remainder have been added for the purposes of this study.

116. Number of bony dermal callosities in the plastron reduced. Absent = 0, present = 1. Primitively the turtle plastron is composed of one midline element (entoplastron) and at least five pairs of bones (epi-, hyo-, meso-, hypo- and xiphiplastra) although some forms may have more than one pair of mesoplastra (Odontochelys semitestacea and Proterochersis robusta). In some clades, only a deep dermal ossification represents these elements and an overlying superficial dermal callosity is absent (Meylan 1987, character 9). Three or fewer pairs of dermal callosities in the plastron, as seen in members of the Trionychinae, is considered derived.

117. Suprascapular fontanelles. Absent = 0, present = 1. Primitively the adult turtle carapace is closed at the junction of the nuchal, first costal and first neural bones. An opening in this region, as seen in certain members of the Trionychinae is considered derived.

118. Shape of epiplastron. Triangular = 0, I-shaped = 1, J-shaped = 2. Primitively the epiplastron of turtles is a more or less triangular element with a variable exterior margin. In certain trionychids it is reduced to an I-shaped (1) or J-shaped (2) deep dermal ossification.

119. Bridge length. Long bridge = 0, short bridge = 1. In most turtles, including most primitive forms, the bridge is long, about one-third of the total plastron length. In those forms in which it is shorter, one-quarter or less of plastron length as in Chelydra serpentina, Staurotypus or Apalone, this is considered a derived condition.

120. Medial process of jugal. Present = 0, absent = 1. Most turtles have a medially directed process of the jugal that articulates with the pterygoid or pterygoid and palatine (Gaffney 1979, p. 79). Where this medial process is absent, as in Dermochelys coriacea, this is considered a derived condition.

121. Coracoid length. Dorsal process of scapula longer than coracoids = 0, coracoids longer than dorsal process of scapula = 1. Turtles have a triradiate pectoral girdle in which the dorsal process of the scapula is normally the longest of the three processes. Those forms in which the coracoid is longer than the dorsal process of the scapula, as in Dermochelys, Lepidochelys kempi or Podocnemis, are considered to have a derived condition.

122. Wide angle between dorsal process and acromion process of scapula. About right angle = 0, angle > 105 = 1. The dorsal process of the scapula forms an approximate right angle in Proganochelys and most turtles. Where this wider (>105o as in most testudinids) this can be considered a derived condition.

123. Pectineal process of pubis expanded. No = 0, yes = 1. In most turtles, including Proganochelys, the pectineal process (lateral pubic process of Gaffney 1990, Fig. 144) is narrower than the inter-pubic contact. Those forms in which this process is as wide or wider than the interpubic contact, as in Lissemys, Apalone, and Dermochelys, can be considered to have a derived condition.

124. Humerus length. Femur longer than humerus = 0, femur shorter than humerus = 1. In most turtles including Proganochelys (Gaffney 1990, Fig. 151) the femur is longer than the humerus. In certain marine species (i.e., Dermochelys, Lepidochelys) and land tortoises (Geochelone, Gopherus) the femur is shorter than the humerus. The latter is considered as a derived condition.

125. Simple, flat carpals and tarsals. Multifaceted carpals and tarsals = 0, simple flat carpals and tarsals = 1. In most turtles including Proganochelys (Gaffney 1990, Figs. 161, 174) the carpals and tarsals are multifaceted, complex elements. In forms with paddle-like limbs, these elements are simple, thin discs of bone.

126. Epiplastral lip. Absent = 0, present = 1. Only the most primitive turtles possess a dorsal process of the epiplastron (see character 112). Where this process is absent, the epiplastra are normally only slightly thickened at the shell margin. Where the epiplastron is greatly thickened along its anterior margin, as in many members of the Testudinidae, this is considered as a derived condition.

127. Pleuro-marginal scute sulcus coincident with costoperipheral suture. No = 0, yes or on costals = 1. In most turtles including Proganochelys (Gaffney 1990, Fig. 86) there are scute sulci on the peripheral bones marking the medial limits of the marginal scutes. Where supramarginal scutes are absent, these are pleuro-marginal scute sulci. When these sulci lie on the costoperipheral suture (as in some members of the Testudinidae) or on the costals (posteriorly in Adocus), this can be considered a derived condition.

128. Bridge peripheral height. Bridge peripherals the same size as remaining peripherals = 0, bridge peripherals twice as tall as the remaining peripherals = 1. Although the bridge of Proganochelys is not well known (Gaffney 1990, p. 127), in most turtles, including primitive forms, the bridge peripherals are approximately the same size as the more anterior and posterior peripherals. Those forms in which the bridge peripherals are approximately twice as tall as the remaining peripherals (as in Gopherus and Geochelone), can be considered to have a derived condition.

129. Coracoid fan-shaped. No = 0, yes = 1. The coracoid of most turtles is longer than wide and in the Casichelyida is somewhat wider distally than proximally. Those forms that have a very short but distally very wide (i.e., fan-shaped) coracoid (as in Gopherus or Kinixys), can be considered to have a derived condition.

130. Palatine contributes to triturating surface of upper jaw. Absent = 0, present = 1. In most turtles including Proganochelys the palatine does not appear on the triturating surface. Those forms in which it makes a significant contribution to the triturating surface (as in Graptemys or Podocnemis) can be considered to have a derived condition.

131. Foramen caroticopharyngeale. Small = 0, large = 1. The foramen caroticopharyngeale is a small opening in the pterygoid through which the arteria carotico-pharyngeale exits the skull. In most turtles in is very small [i.e., Chelydra (Gaffney 1979, Fig. 9)] or not identifiable (Proganochelys). Those forms that have an enlarged foramen caroticopharyngeale [as in Adocus (Meylan and Gaffney 1989, Fig. 5, labeled as “foramen basisphenoidale”) and Clemmys (Gaffney 1979, Fig. 47)] can be considered to have a derived condition.

132. Carapacial contacts of inguinal buttress. Not reaching costals = 0, reaching costals = 1. In primitive turtles including Proganochelys the plastral buttresses do not reach the overlying costal bones of the carapace. When they do, there are two sets of contacts visible for the inguinal buttress. It may contact only the fifth costal (as in Podocnemis or Deirochelys) or it may contact both the fifth and sixth costals (as in Hardella). These are derived conditions.

133. Musk duct absent from axillary region. Absent = 0, present = 1. Musk ducts absent in Progaonchelys but are present in a variety of turtles and in many forms are visible in the shell as foramina (Podocnemis) or grooves (kinosternids) in the vicinity of the bridge. Since there are forms with only axillary or only inguinal musk ducts present, the occurrence of musk ducts is treated as two characters. This character will be problematic for fossils of those clades in which the living members have musk ducts that do not leave any trace in the skeleton (i.e., Trionychidae). Presence of axillary musk ducts can be considered derived.

134. Musk duct absent from inguinal region. See character 133. Absent = 0, present = 1. Presence of inguinal musk ducts can be considered derived.

135. Hinge at hyo-hypoplastral suture. Absent = 0, present = 1. Primitively the hyo- and hypoplastra are sutured along their contact. Forms in which this contact is kinetic (as in Terrapene) can be considered to have a derived condition.

136. Pectoral scales (set 4) reach entoplastron. No = 0, yes = 1. Primitively the turtle plastron is covered by seven sets of scales (Hutchison and Bramble 1981) as is the case in Proganochelys (Gaffney 1990, Fig. 92). The fourth pair, the pectorals, in Proganochelys and most turtles is located well posterior to the entoplastron. Those forms in which it reaches the entoplastron (as in Emys and Podocnemis) can be considered to have a derived condition.

137. Last pair of marginal scutes contacts suprapygal. No = 0, yes = 1. In most turtles the last pair of marginal scales remain unfused and in contact with only the peripheral elements. Those forms that have the last marginals (either paired or fused) that contact the suprapygal (as in Hardella) can be considered to have a derived condition.

138. Quadrate-basioccipital contact. No = 0, yes = 1. In Proganochelys and other primitive turtles, the quadrate is located well lateral to the basicranium, lacks a medial process, and is not in contact with the basioccipital. Those forms with a large medial process of the quadrate that contacts the basioccipital (as in Podocnemis) can be considered to have a derived condition (See also Gaffney et al. 2006, p. 600).

139. Jugal contributes to triturating surface of upper jaw. No = 0, yes = 1. In most turtles including Proganochelys the jugal does not appear on the triturating surface. Those forms in which it makes a significant contribution to the triturating surface (as in Bothremys or Sandownia) can be considered to have a derived condition.

140. Antrum postoticum. Absent = 0, small = 1, large = 2. The antrum postoticum is absent from Proganochelys because the incisura columellae auris is widely open. The presence of a small antrum postoticum (as in Podocnemis expansa or Chelonia) is considered derived and a moderate to large antrum (as in Pelusios or Gopherus) is considered further derived. (See also Gaffney et al. 2006, p. 592).

141. Quadrate contacts basisphenoid but not basioccipital. No = 0, yes = 1. In Proganochelys and other primitive turtles, the quadrate is located well lateral to the basicranium, lacks a medial process, and is not in contact with the basisphenoid or basioccipital. Those forms with a large medial process of the quadrate that contacts the basisphenoid but not the basioccipital (as in Pelusios) can be considered to have a derived condition that differs from that described in character 138 above.

142. Short postorbital exposed by temporal emargination. No = 0, yes = 1. Primitively the skull roof of turtles is not emarginate and the postorbital is not exposed by emargination. Those forms in which a small postorbital is exposed by temporal emargination (as in Pelusios or Trachemys) can be considered to have a derived condition.

143. Prefrontal-palatine contact. Present = 0, absent = 1. In Proganochelys the prefrontal apparently contacts the palatine medial to the foramen orbito-nasale (Gaffney 1990, Fig. 42b) as is the case in most cryptodires. Those forms in which this contact is absent can be considered to have a derived condition.

144. Jugal exposed on temporal margin. No = 0, yes = 1. Primitively the jugal is not exposed by temporal emargination, those forms in which it is exposed can be considered to have a derived condition.

145. Foramen praepalatinum. Present = 0, absent = 1, foramen intermaxillaris = 2. The presence of the F. praepalatinum in Proganochelys remains uncertain, however, as they are common to most Casichelydia their presence can be considered primitive. Two derived conditions are recognized. One in which the premaxilla is well-ossified and there is no foramen intermaxillaris and one in which a foramen intermaxillaris is well developed.

146. Crista supraoccipitalis projecting well posterior to occipital condyle. No = 0, yes = 1. In Proganochelys, the supraoccipital is very short and there is no posterior projection. In casichelyidians (Chelus, Pelusios) the supraoccipital is very short and does not extend well posterior to the occipital condyle. In others (Apalone, Chelydra, Chelonia), it extends well posterior to the occipital condyle.

147. Maxillae meet on the midline. No = 0, yes = 1. In Proganochelys and most turtles the premaxillae and vomers separate the maxilla on the midline of the palate. Where the maxillae do meet on them midline as in Caretta or Phrynops, this can be considered a derived condition.

148. Basisphenoid with reduced ventral exposure. No = 0, yes = 1. Primitively turtles have a broad and long basisphenoid. Those forms in which this exposure is much reduced or absent can be considered to have a derived condition.

149. L-shaped prefrontal as seen from anterior. No = 0, yes = 1. Absent primitive, present derived. The prefrontal normally forms the anteriomedial margin of the orbit. Those forms in which it has an L-shape and contributes to the ventromedial margin of the orbit are considered to have a derived condition.

Appendix 13.2

Data set used to estimate phylogenetic positions of Brachyopsemys and Sandownidae.

Proganochelys: 00000 00000 00000 00000 00?00 00000 00000 00000 00?00 00000 00000 0000? 00000 00000 ?0000 00000 00000 00?00 00000 00000 00000 ?0000 00000 00000 00000 0??00 00000 0?000 0000? 0000

Elseya: 11111 00001 10010 01001 11?10 11111 11101 11110 00400 11110 00001 0000? 00000 00000 ?0000 01000 00000 00000 00000 01000 11000 00010 011?1 00000 ?00?0 00011 01110 1000? 01001 0100

Phrynops: 11111 00001 10010 01001 11?10 11111 11101 11110 00400 11111 11001 0001? 00000 00000 ?0000 01000 00000 00000 00000 01000 11000 00010 011?1 00000 000?0 00010 01??0 ??00? 01101 0100

Chelus: 11111 00001 10010 01101 11?10 11111 11101 11110 00400 11111 11111 0001? 00000 00000 ?0000 01000 00000 00000 00000 01000 11000 00010 011?1 00000 ?00?0 00011 03??0 1000? 01000 0000

Chelodina: 11111 00001 10011 01001 11?10 11111 11101 11110 00600 11111 11111 0000? 00000 00000 ?0001 10000 ?0000 01000 00000 00000 00000 01000 11000 00010 111?1 00000 ?00?0 00010 01000 1000? 11101 0000

Podocnemis: 11?11 00001 10011 01111 11?10 11111 01101 11111 11100 00000 00001 0001? 00000 00000 ?0000 01000 00000 00000 00000 01000 10000 00010 01101 00000 100?0 00011 01110 10101 00101 1001

Pelusios: 11?11 00001 10011 01111 11?10 11110 01101 11111 11211 00000 00001 0001? 00000 00000 ?0000 01000 00000 00000 00000 01000 10000 00010 11101 00000 ?00?0 00011 01010 00002 11100 0000

Pelomedusa: 11?11 00001 10011 01111 11?10 11111 01101 11111 11311 00000 00001 0001? 00000 00000 ?0000 01000 00000 00000 00000 01000 10000 00010 11101 00000 ?00?0 00011 02110 00000 11100 0000

Platysternon: 11111 11111 11101 10110 00?11 00111 10111 00101 00600 00000 00000 11111 00000 00000 00000 01000 00000 00000 00000 00100 01100 01100 11101 00000 00000 00011 00??0 ??00? 00000 1010

Chelydra: 11111 11111 11101 10110 00?11 00111 10111 00101 00500 00000 00000 11111 00000 00010 00000 01000 00000 00000 00000 00000 00100 01100 11101 00010 00000 00010 00??0 ??002 00000 1000

Chelonia: 11111 11111 11100 10110 00?11 00111 10111 11101 00700 00000 00000 0010? 11110 00000 00000 00000 10000 01000 00100 01101 01100 00000 11011 01011 00??0 ??001 00001 1020

Dermochleys: 11111 11111 11100 10110 00?11 00111 10111 11101 00?00 00000 00000 0010? 11111 10000 ?0000 00000 0?000 000?? 100?? 0000? 00100 01101 01100 ?0?01 11011 0?010 00??0 ??000 00101 0000

Dermatemys: 11111 11111 11101 10110 00?11 01111 10111 11101 00700 00000 00000 00000 00000 01111 10100 01000 00000 00011 11000 01000 00110 01101 11101 00000 00000 00010 00??0 ?0000 01000 1000

Kinosternon: 11111 11111 11101 10110 00?11 01111 10111 11101 00700 00000 00000 00000 00000 01111 10000 01000 00000 00011 11111 10111 00110 01101 11101 00010 00000 00011 001?1 ?0000 01101 1000

Staurotypus: 11111 11111 11101 10110 00?11 01111 10111 11101 00600 00000 00000 10000 00000 01111 10000 01000 00000 00011 11111 10111 00110 01101 11101 00010 00000 00011 001?1 ?0000 01011 1000

Carettochelys: 11111 11111 11101 10110 00?11 01111 10111 11101 10900 00000 00000 0011? 02000 01111 ?1011 10111 1?000 000?? 000?1 01100 ?11?0 01101 11101 00000 100?0 00010 00??1 ??001 01002 1000

Lissemys: 11111 11111 11101 10110 00?11 01111 10111 11101 10800 00000 00000 00110 00000 01110 11011 10111 1?111 111?? 000?0 01000 ?01?0 01101 11101 00100 101?0 0?010 00??1 ??000 01112 1100

Apalone 11111 11111 11101 10110 00?11 01111 10111 11101 10800 00000 00100 00110 00000 01110 11011 10111 1?111 111?? 000?0 01000 ?01?0 01101 11101 11210 101?0 0?010 00??1 ??000 01112 1000

Clemmys 11111 11111 11101 10110 00?11 01111 10111 11101 00400 00000 00002 00000 00000 00000 00000 01000 00000 00010 00000 01000 11000 01101 11111 00000 00000 00010 12101 100?? 01000 1000

Graptemys 11111 11111 11101 10110 00?11 01111 10111 11101 00400 00000 00002 0000? 00000 00000 ?0000 01000 00000 00010 00000 01000 11101 11101 11111 00000 00000 00011 02000 000?? 01001 1000

Trachemys 11111 11111 11101 10110 00?11 01111 10111 11101 00400 00000 00002 00000 00000 00000 00000 01000 00000 00010 00000 01000 11001 11101 11111 00000 00000 00011 02000 000?? 01000 1000

Heosemys 11111 11111 11101 10110 00?11 01111 10111 11102 00500 00000 00001 0000? 00000 00000 ?0000 01000 00000 00010 00000 01000 11100 01101 11111 00000 00000 00010 ?1110 110?? 01??? ????

Chinemys 11111 11111 11101 10110 00?11 01111 10111 11102 00500 00000 00001 0000? 00000 00000 ?0000 01000 00000 00010 00000 01000 11100 01101 11111 00000 00000 00011 01110 1100? 0100? 1000

Geochelone 11111 11111 11101 10110 00?11 01111 10111 11102 00500 00000 00001 00010 00000 00000 00000 00000 00000 00010 00000 01000 11100 01101 11111 00001 01010 11120 01000 110?? 01000 1000

Adocus 11111 11111 11101 10110 00?11 01111 1011? ?1101 00?00 00000 00000 0000? 00000 0?101 ?1110 0100? 01000 00000 00000 00000 00100 ?1101 11111 00000 100?0 00011 10??0 11000 01000 1000

Emarginachelys 11111 11?11 11101 1?110 0??1? ?1111 1011? ??1?? ?0?00 0000? 00000 ??00? 00000 0?111 ?0100 0100? 00000 00?10 ?0000 0100? 00110 ?110? 11111 00000 00000 01000 00??0 ?0000 00000 1000

Meiolania 11111 11111 11100 10000 01?10 ?0111 10100 00000 00?00 00000 00000 ?000? 0?000 000?0 ?0000 0100? 00000 00?0? 00000 00000 ?0100 00000 0111? 00000 00000 00020 00??0 ??0?? 00000 0010

Sinemys 11?11 11111 11101 1?000 0??1? ?1111 10110 000?? 1??01 0??01 00000 ?111? ????0 00??? ?100? ?10?? ?0000 0???? 00000 ?10?? 0110? ?1000 111?? ????0 ?0?00 000?0 ?0110 000?? 0110? 0?00

Peltochelys ????? ????? ????? ????? ????? ??111 1???? ????? ????? ????? ????? ??0?? ?2??? ????? ????? ??0?? ?1000 ???00 ??001 ????? 00?0? ????? ??1?? 0000? ????? 0?0?? ???0? ????? ????? ????

Mongolemys 11111 11?11 11101 11110 0??1? ??111 101?? ????0 0???? 00?00 ?0001 0?00? 00??? 000?? ??000 0100? 00000 ?0?10 ?0000 ??0?0 0?10? 0??0? 111?? ????? ????? 0001? 11110 00001 01000 ?000\

Sandownia 11111 1?111 11100 11110 0??11 00??? ????? ????0 ???00 00?00 00?0? ???1? ??001 001?? ??001 00?0? 0???? ?0??? 10??? ?10?? ??1?? 0??0? 0???? ????0 ????? ????1 1???? ??01? 00001 0011

A. maortuensis ????? ????? ????? ????? ????? ??111 10111 ??1?? 1???? ????? ????0 0?1?? 0???? ????? ?1??? ??1?? ??111 ???1? ??010 ????? ????? ????? ??1?? 1121? 1?1?? 0??0? ?0??0 ????? ????? ????

Santanachelys 11111 1?111 11100 11110 0??11 00??? ????? ????1 ???00 00?00 00?0? ???0? 1?111 1?0?? ??001 01?0? 0???? ?0??? 1???? ?10?? ??1?? 0??0? 0???? 00001 11111 0?000 001?? ??0?? 00?0? 1?00

Hadrianus ????? ????? ????? ????? ????? ??111 10??? ????? 0???? ????? ????0 ??0?? ????? ????? ????? ??0?? ?0000 ???10 ??00? ???0? 2??0? ????? ?11?1 0000? ?10?? 1102? ?0??0 00??? ????? ????

Ptychogaster ?1111 11?11 1110? ????0 0???? ??111 10??? ????? 0???? ????? ????1 ??0?? ????? ????? ??0?? ?100? ?0000 ???10 ??00? ????0 2?00? ????? ?11?? 0000? ????? 000?? ???11 100?? 0???? ????

Baltemys ????? ????? ????? ????? ????? ??111 10??? ????? ????? ????? ????0 0?0?? ?0??? ????? ????? ??0?? ?0000 ???11 ??121 ????1 2??1? ????? ?11?? 0001? ????? 000?? ?01?0 00??? ????? ????

Hoplochelys ????? ????? ????? ????? ????? ??111 10??? ????? ????? ????? ????0 0?0?? ?0??? ????? ????? ??0?? ?0000 ???10 ??110 ????0 0??1? ????? ?11?? 0001? ????? 000?? ?01?0 10??? ????? ????

Araripemys 11111 00?01 10011 01111 0??10 ?0111 11101 10111 11?00 00000 00100 0010? 00000 00000 ?0000 01010 00001 00?10 00000 0100? 10000 00010 111?0 00000 ?0010 0?0?0 00??0 000?0 0011? ?000

P. rusingae ????? ????? ????? ????? ????? ??110 0???? ????? 11??? ????? ????? ??0?? ????? ????? ????? ??0?? ?0000 ????? ??0?0 ????? 1???? ????? ????? ?0??? ????? ??0?? ????0 ????? ????? ????

Cearachelys 11111 00001 1001? ?1111 11?10 ?1111 01101 ??1?? 1??10 00000 00000 0?01? 00110 000?? ??000 0100? 00000 ???00 00000 ?01?? 10000 00?10 111?? 00000 ????? 000?1 0?110 001?1 0010? 0000

Brachyopsemys 11111 11111 11100 10110 0??1? 00??? ????? ????0 ???00 00?00 00?0? ???0? ??000 001?? ??000 00?0? 1???? ?0??? 00??? ?10?? ??1?? 0??0? 0???? ????0 ????? ????1 0???? ??011 00101 1111

Erquilinnesia 11111 11111 11100 1?110 0??1? 00111 10??? ????? 0??00 00?00 0??00 0?10? ??1?1 1?0?0 ??00? 0000? 10000 ?0??? 10000 ?1000 ??10? ????? 0110? 0?000 ??0?1 01011 00??0 ?0001 00?01 1020

Thalassemys 11111 11111 11100 00000 00?1? 00?11 1?000 ????? ???00 00?00 00?00 0??0? ?000? 0?0?? ?00?1 0100? 000?0 00??0 0000? ?10?? ??10? 0110? 0??01 00?0? ????? ?0??? 0???0 0?001 00100 1000

Solnhofia 11111 11111 11101 10010 00?1? 0?111 1?0?? ?01?0 10?00 00000 00?00 0??0? ??01? 000?? ?0000 0100? 00000 00??0 00000 ?10?? ?0100 01100 0??0? 00000 00??0 ?00?1 00110 0?001 00100 1000

Tasbacka 11111 11111 11100 10110 00?1? 00111 101?? ??1?? ???00 00?00 00?00 ??10? ??11? 100?? ??000 0100? 0?000 ?0??? 00??? ?10?? ??1?0 0??0? 0?11? 00000 ??01? ?10?0 00??0 ??001 00101 1020

Euclastes 11111 11111 11100 10110 00?1? 00??? ????? ????? ????? 00?00 00?0? ???0? ??11? 1?0?? ??000 01?0? 0???? ?0??? 0???? ?10?? ??1?? 0??0? 0???? 0???0 ????? ????0 0???? ??001 00101 1020

Angolachelys 11111 11111 11100 10?10 0??1? ?0??? ??1?? ????? ????? 00?00 00?0? ???1? ????? ?00?? ??0?1 00?0? 1???? ?0??? ?0??? ?10?? ??1?? ???0? 0???? ????0 ????? ????1 0???? ??010 00100 ??11

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tong, H., Meylan, P. (2013). Morphology and Relationships of Brachyopsemys tingitana gen. et sp. nov. from the Early Paleocene of Morocco and Recognition of the New Eucryptodiran Turtle Family: Sandownidae. In: Brinkman, D., Holroyd, P., Gardner, J. (eds) Morphology and Evolution of Turtles. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4309-0_13

Download citation

Publish with us

Policies and ethics