Advertisement

Contemporary History

  • Claudio Vita-FinziEmail author
Chapter
  • 1k Downloads
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

Early attempts to monitor current changes in the Sun necessarily focused on sunspot patterns and solar diameter. The emphasis has shifted to the Sun’s internal workings, its magnetism, and its output of radiation, plasma and particles, but thanks to improved instrumentation the direct assessment of changes in solar emission is now possible at intervals as short as a few microseconds and, besides revealing variations in the extent and timing of oscillations at different wavelengths, the new data make it possible to trace the evolution of individual sunspots, the onset and progress of flares, and changes in the magnetic flux. Global helioseismology yields information about solar structure in general while local helioseismology bears on three-dimensional structure and dynamics. Processes which underpin secular solar history, such as the creation of cosmogenic isotopes, are also clarified by the new data.

Keywords

Helioseismology SOHO SDO PICARD  Sunspot Flare TSI 

References

  1. 1.
    Dziembowski WA, Goode PR, di Mauro MP, Kosovichev G, Schou J (1998) Solar cycle onset seen in SOHO Michelson Doppler imager seismic data. Astrophys J 509:456–460ADSCrossRefGoogle Scholar
  2. 2.
    Ribes E, Ribes JC, Barthalot R (1987) Evidence for a larger Sun with a slower rotation during the seventeenth century. Nature 326:52–55ADSCrossRefGoogle Scholar
  3. 3.
    Thuillier G, Sofia S, Harberreiter M (2005) Past, present and future measurements of the solar diameter. Adv Space Sci 35:329–340ADSCrossRefGoogle Scholar
  4. 4.
    Parkinson J H, Morrison LV, Stephenson F R (1980) The constancy of the solar diameter over the past 250 years. Nature 288:548–551ADSCrossRefGoogle Scholar
  5. 5.
    Noël F (2002) On solar radius measurements with Danjon astrolabes. Astr Astrophys 396:667–672. doi:  10.1051/0004-6361:20021447 ADSCrossRefGoogle Scholar
  6. 6.
    Emilio M, Kuhn JR, Bush RI, Scherrer P (2000) On the constancy of the solar diameter. Astrophys J 543:1007–1010ADSCrossRefGoogle Scholar
  7. 7.
    Costa JER, Silva AVR, Makhmutov VS, Rolli E, Kaufmann P, Magun A (1999) Solar radius variations at 48 Ghz correlated with solar irradiance. Astrophys J 520:L63. doi:  10.1086/312132
  8. 8.
    Kopp G and Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L017106. doi:  10.1029/2010GL045777 CrossRefGoogle Scholar
  9. 9.
    Scafetta N, Willson RC (2009) ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys Res Lett 36:L05701. doi:  10.1029/2008GL036307 CrossRefGoogle Scholar
  10. 10.
    Krivova NA and Solanki SK (2008) Models of solar irradiance variations: current status. J Astrophys Astron 29:151–158ADSCrossRefGoogle Scholar
  11. 11.
    Sofia S (2004) Variations of total solar irradiance produced by structural changes of the solar interior. EOS Trans AGU 85:217, 221ADSGoogle Scholar
  12. 12.
    Harder JW, Fontenla JM, Pilewskie P, Richard EC, Woods TN (2009) Trends in solar spectral irradiance variability in the visible and infrared. Geophys Res Lett 36:L07801. doi:  10.1029/2008GL036797 CrossRefGoogle Scholar
  13. 13.
    Woods TN (2010a) Irradiance variations during this solar cycle minimum. In: Cranmer S, Hoeksema T, Kohl J (eds) SOHO-23: understanding a peculiar solar minimum. ASP Conf Ser 428:68Google Scholar
  14. 14.
    Oliver R, Ballester JL, Baudin F (1998) Emergence of magnetic flux on the Sun as the cause of a 158 day periodicity in sunspot areas. Nature 394:552–553ADSCrossRefGoogle Scholar
  15. 15.
    Woods TN (2010b) SORCE science meting session 3/3.06. At lasp.colorado.edu/sorce/newsGoogle Scholar
  16. 16.
    Foukal P (1980) Solar luminosity variation on short time scales; observational evidence and basic mechanisms. In: Pepin RO, Eddy JA, Merrill RB (ed) The ancient Sun. Pergamon, New YorkGoogle Scholar
  17. 17.
    Woods TN and 13 others (2011) New solar extreme-ultraviolet irradiance observations during flares. Astrophys J 739:59. doi:  10.1088/0004-637X/739/2/59
  18. 18.
    Shibata K and Magara T (2011) Solar flares: magnetohydrodynamic processes. Living Rev Solar Phys 8:1–99. Online at www.livingreviews.org/lrsp-2011–6 Google Scholar
  19. 19.
    Fröhlich C, Foukal PV, Hickey JR, Hudson HS, Willson RC (1980) Solar irradiance variability from modern measurements. In: Sonett CP, Giampapa MS, Matthews MS (eds) The Sun in time, University of Arizona, TucsonGoogle Scholar
  20. 20.
    Fröhlich C and Lean J (2004) Solar radiative output and its variability: evidence and mechanisms. Astron Astrophys Rev 12:273–320ADSCrossRefGoogle Scholar
  21. 21.
    Schrijver (2001) 2001 senior review proposal for TRACE. Lockheed martin missiles and space/ATCGoogle Scholar
  22. 22.
    Bray RJ, Loughhead RE (1964) Sunspots. Chapman and Hall, LondonGoogle Scholar
  23. 23.
    Jaeggli SA, Lin H, Uitenbroek H (2012) On molecular hydrogen formation and the magnetohydrostatic equilibrium of sunspots. Astrophys J 745:13. doi:  10.1088/0004-637X/745/2/133 ADSCrossRefGoogle Scholar
  24. 24.
    Balthasar H, Muglach K (2010) The three-dimensional structure of sunspots. II. The moat flow at two different heights. Astr Astrophys 511:A67. doi:  10.1051/0004-6361/200912978
  25. 25.
    Zhao J, Kosovichev AG, Duvall TL Jr (2001) Investigation of mass flows beneath a sunspot by time-distance helioseismology. Astrophys J 557:384–388ADSCrossRefGoogle Scholar
  26. 26.
    Parker EN (1979) Sunspots and the physics of magnetic flux tubes. I. The general nature of the sunspot. Astrophys J 230:905–913ADSCrossRefGoogle Scholar
  27. 27.
    Low BC, Zhang M (2003) Global magnetic-field reversal in the corona. In: Pap JM, Fox P (eds) Solar variability and its effects on climate, AGU, WashingtonGoogle Scholar
  28. 28.
    Tsurutani BT, Gonzalez WD, Lakhina GS, Alex S (2003) The extreme magnetic storm of 1–2 September 1859. J Geophys Res 108:1268. doi: 1029/2002JA009504 CrossRefGoogle Scholar
  29. 29.
    Lockwood M, Stamper R (1999) Long-term drift of the coronal source magnetic flux and the total solar irradiance. Geophys Res Lett 26:2461–2464ADSCrossRefGoogle Scholar
  30. 30.
    Lockwood M, Stamper R, Wild MN (1999) A doubling of the Sun’s coronal magnetic field during the last 100 years. Nature 388:437–439ADSCrossRefGoogle Scholar
  31. 31.
    Svalgaard L, Cliver EW, Le Sager P (2002) No doubling of the Sun’s coronal magnetic field during the last 100 years. At www.leif.org/research/No%20Doubling.pdf
  32. 32.
    Wang Y-M, Lean J, Sheeley NR Jr (2002) Role of a variable meridional flow in the secular evolution of the Sun’s polar fields and open flux. Astrophys J 577:L53–L57ADSCrossRefGoogle Scholar
  33. 33.
    Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994),. What is a geomagnetic storm? J Geophys Res 99:5771–5792ADSCrossRefGoogle Scholar
  34. 34.
    Karinen A, Mursula K, Takalo J, Ulich Th (2002) An erroneous Dst index in 1971. ESA SP-4787, VicoGoogle Scholar
  35. 35.
    Svalgaard L, Cliver EW (2007) Interhourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed. J Geophys Res 112:A10111. doi:  10.1029/410 2007JA012437ADSCrossRefGoogle Scholar
  36. 36.
    Gannon JL, Love JJ (2010) USGS 1-min Dst index. J Atmos Sol-Terr Phys. doi :  10.1016/j.jastp.2010.02.013 Google Scholar
  37. 37.
    Mays ML, Horton W, Spencer E, Kozyra J (2009) Real-time predictions of geomagnetic storms and substorms: use of the solar wind magnetosphere-ionosphere system model. Space weather 7:S07001. doi:  10.1029/2008SW000459 CrossRefGoogle Scholar
  38. 38.
    Newell PT, Sotirelis T, Liou K, Rich FJ (2007) A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. J Geophys Res 112:A01206. doi:  10.1029/2006JA012015 CrossRefGoogle Scholar
  39. 39.
    Thalmann JK, Wiegelmann T (2008) Evolution of the flaring active region NOAA 10540 as a sequence of nonlinear force-free field extrapolations. Astron Astrophys 484:495–502. doi:  10.1051/0004-6361:200809508 Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of MineralogyNatural History MuseumLondonUK

Personalised recommendations