Advertisement

Cosmogenic Radiocarbon

  • Claudio Vita-FinziEmail author
Chapter
  • 1k Downloads
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

The cosmogenic 14C record for the Holocene is based on tree rings and marine deposits and now extends to 50,000 yr BP. Its significance for solar history is obscured by climatic and biological factors, but comparison with the 10Be signal is helpful where the evidence is derived from ice cores; elsewhere the 14C data can be supplemented by information on changing climatic zonation using cave and river deposits. Various periodicities have been identified by spectral analysis of the 14C signal, including the ~2300 yr Hallstatt cycle and the 205 yr de Vries cycle. An apparent decline in atmospheric 14C over the last 10 kyr extends the trend identified in the 10Be signal for earlier millennia.

Keywords

14Holocene Hallstatt De Vries ITCZ Grand minima Grand maxima 

References

  1. 1.
    McCracken KG, Beer J (2007) Long-term changes in the cosmic ray intensity at Earth, 1428–2005. J Geophys Res 112:A10101. doi: 10.1029/2006JA012117 ADSCrossRefGoogle Scholar
  2. 2.
    Beer J, McCracken KG, Abreu J, Heikkilä U, Steinhilber F (2008) Long-term changes in cosmic rays derived from cosmogenic radionuclides. In: Proceedings of 30th International Cosmic Ray Conference 1:765–768Google Scholar
  3. 3.
    Muscheler R, Heikkilä U (2012) Constraints on long-term changes in solar activity from the range of variability of cosmogenic radionuclide records. Astrophys Space Sci Trans 7:355–364. doi: 10.5194/astra-7-355-2011 ADSCrossRefGoogle Scholar
  4. 4.
    Abreu JA, Beer J, Steinhilber F, Christl M, Kubik PW (2011) 10Be in ice cores and 14C in tree rings: separation of production and climate effects. Space Sci Rev online. doi: 10.1007/s11214-011-9864-y Google Scholar
  5. 5.
    Elsasser W, Ney EP, Winckler JR (1956) Cosmic ray intensity and geomagnetism. Nature 178:1226–1227ADSCrossRefGoogle Scholar
  6. 6.
    Bucha V (1969) Changes of the Earth’s magnetic moment and radiocarbon dating. Nature 224:681–682ADSCrossRefGoogle Scholar
  7. 7.
    Mazaud A, Laj C, Bard E, Arnold M, Tric E (1991) Geomagnetic field control of 14C production over the last 80 Ky: implications for the radiocarbon time-scale. Geophys Res Lett 18:1885–1888. doi: 10.1029/91GL02285 ADSCrossRefGoogle Scholar
  8. 8.
    Laj C, Kissel C, Mazaud A, Michel E, Muscheler R, Beer J (2002) Geomagnetic field intensity, north atlantic deep water circulation and atmospheric Δ14C during the last 50 kyr. Earth Planet Sci Lett 200:177–190ADSCrossRefGoogle Scholar
  9. 9.
    De Vries HL (1958) Variation in concentration of radiocarbon with time and lLocation on Earth. In: Proceedings of Kon Ned Akad Wetensch B, 61:94–102Google Scholar
  10. 10.
    Eddy JA (1976) The Maunder Minimum. Science 192:1189–1202ADSCrossRefGoogle Scholar
  11. 11.
    Usoskin IG, Solanki SK, Kovaltsov GA (2007) Grand minima and maxima of solar activity: new observational constraints. Astron Astrophys 471:301–309ADSCrossRefGoogle Scholar
  12. 12.
    IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001:the Scientific Basis. WMO/UNEP, GenevaGoogle Scholar
  13. 13.
    Licciardi JM, Schaefer JM, Taggart JR, Lund DC (2009) Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages. Science 325:1677–1679ADSCrossRefGoogle Scholar
  14. 14.
    Kreutz KJ, Mayewski PA, Meeker LD, Twickler MS, Whitlow SI, Pittalwala I I (1997) Bipolar changes in atmospheric circulation during the Little Ice Age. Science 277:1294–1296CrossRefGoogle Scholar
  15. 15.
    Broecker WS (2000) Was a change in thermohaline circulation responsible for the Little Ice Age? Proc Nat Acad Sci 97:1339–1342ADSCrossRefGoogle Scholar
  16. 16.
    Jirikowic JL, Damon PE (2005) The medieval solar activity maximum. Clim Change 26:309–316CrossRefGoogle Scholar
  17. 17.
    Lean J (2000) Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys Res Lett 27:2425–2428ADSCrossRefGoogle Scholar
  18. 18.
    Versteegh GJM (2005) Solar forcing of climate. 2: evidence from the past. Space Sci Rev 120:243–286ADSCrossRefGoogle Scholar
  19. 19.
    Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Clim 6:2162–2174ADSCrossRefGoogle Scholar
  20. 20.
    Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Monthly Weather Rev 97:163–172ADSCrossRefGoogle Scholar
  21. 21.
    Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Niño/Southern oscillation and tropical pacific climate during the last millennium. Nature 424:271–276ADSCrossRefGoogle Scholar
  22. 22.
    Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736ADSCrossRefGoogle Scholar
  23. 23.
    Emile-Geay J, Cane MA, Seager R, Almasi P (2007) El Niño as a mediator of the solar influence on climate. Paleoceanography 22:doi: 10.1029/2006PA001304 CrossRefGoogle Scholar
  24. 24.
    Koutavas A, deMenocal PB, Olive GC, Lynch-Stieglitz J (2006) Holocene El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34:993–996ADSCrossRefGoogle Scholar
  25. 25.
    Marchitto TM, Muscheler R, Orti JD, Carriquiry JD, van Geen A (2010) Dynamical response of the tropical Pacific Ocean to solar forcing during the Holocene. Science 330:1378–1381ADSCrossRefGoogle Scholar
  26. 26.
    Neff U, Burns SJ, Mangini A, Mudelsee M, Fleitmann D, Matter A (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411:290–293ADSCrossRefGoogle Scholar
  27. 27.
    Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857ADSCrossRefGoogle Scholar
  28. 28.
    Vita-Finzi C (2008) Fluvial solar signals. Geol Soc London Spec Pub 296:105–115CrossRefGoogle Scholar
  29. 29.
    Colebrook JM (1976) Trends in the climate of the North Atlantic Ocean over the past century. Nature 263:576–577ADSCrossRefGoogle Scholar
  30. 30.
    Mayewski PA, Maasch KA, Yan Y, Kang S, Meyerson EA, Sneed SB, Kaspari SD, Dixon DA, Osterberg EC, Morgan VI, van Ommen T, Curran MAJ (2005) Solar forcing of the polar atmosphere. Ann Glaciol 41:147–153ADSCrossRefGoogle Scholar
  31. 31.
    Vita-Finzi C (2010) Alluvial history and climate crises. Spec Trans Am Philos Soc 1:115–124Google Scholar
  32. 32.
    Hoelzmann P, Gasse F, Dupont LM, Salzmann U, Staubwasser M, Leuschner DC, Sirocko F (2004) Palaeoenvironmental changes in the arid and subarid-belt (Sahara-Sahel-Arabian Peninsula) from 150 ka to present. Dev Paleoenv Res 6:219–256CrossRefGoogle Scholar
  33. 33.
    Yancheva G, Nowaczyk NR, Mingram J, Dulski P, Schettler G, Negendank JFW, Liu J, Sigman DM, Peterson LC, Haug GH (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445:74–77ADSCrossRefGoogle Scholar
  34. 34.
    Donders TH, Haberle SG, Hope G, Wagner F, Visscher H (2007) Pollen evidence for the transition of the eastern Australian climate system from the post-glacial to the present-day ENSO mode. Quat Sci Rev 26:1621–1637ADSCrossRefGoogle Scholar
  35. 35.
    Gomez B, Carter L, Trustrum NA, Palmer AS, Roberts AP (2004) El Niño–Southern Oscillation signal associated with middle Holocene climate change in intercorrelated terrestrial and marine sediment cores, North Island, New Zealand. Geology 32:653–656ADSCrossRefGoogle Scholar
  36. 36.
    Betancourt JL, Latorre C, Rech JA, Quade J, Rylander KA (2000) A 22,000-year record of monsoonal precipitation from northern Chile’s Atacama Desert. Science 289:1542–1546ADSCrossRefGoogle Scholar
  37. 37.
    Reimer PJ et al (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  38. 38.
    Hoffmann DL, Beck JW, Richards DA, Smart PL, Singarayer JS, Ketchmark T, Hawkesworth CJ (2010) Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth Planet Sci Lett 289:1–10ADSCrossRefGoogle Scholar
  39. 39.
    Reimer PJ et al (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058Google Scholar
  40. 40.
    Bard E (1998) Geochemical and geophysical implications of the radiocarbon calibration. Geochim Cosmochim Acta 62:2025–2038ADSCrossRefGoogle Scholar
  41. 41.
    Lal D, Jull AJT, Pollard D, Vacher L (2005) Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic 14C in ice at Summit, Greenland. Earth Planet Sci Lett 234:335–349ADSCrossRefGoogle Scholar
  42. 42.
    Garnier F, Laj C, Herrero-Bervera E, Kissel C, Thomas D (1996) Preliminary determinations of geomagnetic field intensity for the last 400 kyr from the Hawaii Scientific Drilling Project core, Big Island, Hawaii. J Geophys Res 101. doi: 10.1029/95JB03844
  43. 43.
    Lal D (2009) Radiocarbon concentrations in South Pole ice samples of ages 120–954 yr. At http://www.usap-data.org/entry/NSF-ANT05-38683/
  44. 44.
    Sturrock PA (2009) Combined analysis of solar neutrino and solar irradiance data: further evidence for variability of the solar neutrino flux and its implications concerning the solar core. Solar Phys 254:227–239ADSCrossRefGoogle Scholar
  45. 45.
    Vecchio A, Carbone V. 2009. Spatio-temporal analysis of solar activity: main periodicities and period length variations. Astron Astrophys 502:981–987ADSCrossRefGoogle Scholar
  46. 46.
    Liritzis I (1995) Quasi-periodic variation in the solar-neutrino flux revisited. Solar Phys 161:29–47ADSCrossRefGoogle Scholar
  47. 47.
    Letfus VI (2000) Sunspot and auroral activity during Maunder Minimum. Solar Physics 197:203–213ADSCrossRefGoogle Scholar
  48. 48.
    Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38. doi: 10.1029/2010GL045777 CrossRefGoogle Scholar
  49. 49.
    Garnier F, Laj C, Herrero-Bervera E, Kissel C, Thomas D (1996) Preliminary determinations of geomagnetic field intensity for the last 400 kyr from the Hawaii Scientific Drilling Project core, Big Island, Hawaii. J Geophys Res 101. doi:  10.1029/95JB03844 Google Scholar
  50. 50.
    Knudsen MF, Riisager P, Donadini F, Snowball I, Muscheler R, Korhonen K, Pesonen LJ (2008) Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr. Earth Planet Sci Lett 272:319–329ADSCrossRefGoogle Scholar
  51. 51.
    Babcock HW (1961) The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J 133:572–587ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of MineralogyNatural History MuseumLondonUK

Personalised recommendations