Advertisement

Isotopes and Ice Cores

  • Claudio Vita-FinziEmail author
Chapter
  • 1k Downloads
Part of the SpringerBriefs in Astronomy book series (BRIEFSASTRON)

Abstract

Isotopes produced by the interaction of galactic cosmic rays (GCRs) with atmospheric gases are incorporated in ice, sediments and plants. Beryllium-10 (10Be) has a half life (t1/2) of 1.5 Myr. Its short atmospheric residence time means that changes in 10Be production can be traced at high resolution in stratified ice, but extracting the solar signal is complicated by climatic, geomagnetic and other factors and is performed confidently only for data from ~100–1,000 yr BP, where the Maunder and other sunspot minima are clearly represented. Nevertheless progress in geomagnetic, palaeoclimatic and glaciological reconstruction should eventually unlock the solar data inherent in 10Be sequences that already span the last 800 kyr. There is also the promise of identifying solar energetic particle (SEP) events from nitrate-rich layers in ice cores.

Keywords

Galactic cosmic rays Cosmogenic isotopes Beryllium-10 (10Be) GRIP EPICA SEPs 

References

  1. 1.
    Wieler R, Beer J, Leya I (2011) The galactic cosmic ray intensity over the past 106–109 years as recorded by cosmogenic nuclides in meteorites and terrestrial samples. Space Sci Rev. doi:  10.1007/s11214-011-9769-9 Google Scholar
  2. 2.
    Lifton NA, Bieber JW, Clem JM, Duldig ML, Evenson P, Humble JE, Pyle R (2005) Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth Planet Sci Lett 239:140–161ADSCrossRefGoogle Scholar
  3. 3.
    Usoskin IG, Solanki SK, Taricco C, Bhandari N, Kovaltsov GA (2006a) Long-term solar activity reconstructions: direct test by cosmogenic 44Ti in meteorites. Astron Astrophys 457:L25–L28 ADSCrossRefGoogle Scholar
  4. 4.
    Usoskin IG (2008) A history of solar activity over millennia. www.livingreviews.org/lrsp-2008
  5. 5.
    Muscheler R, Beer J, Kubik PW (2004) Long-term solar variability and climate change based on radionuclide data from ice cores. In Pap JM, Fox P (eds) Solar variability and its effects on climate. AGU, Washington DCGoogle Scholar
  6. 6.
    Masaryk J, Beer J (2009) An updated simulation of particle fluxes and cosmognic nuclide production in the Earth’s atmosphere. J Geophys Res 114, D11103. doi:  10.1029/2008JD010557 ADSCrossRefGoogle Scholar
  7. 7.
    Beer J, Raisbeck GM, Yiou F (1991) Time variations of 10Be and solar activity. In Sonett CP, Giampapa MS, Matthews MS (eds) The Sun in time. Univ Ariz Press, Tucson AZGoogle Scholar
  8. 8.
    Gee J S, Cande SC, Hildebrand JA, Donnelly K, Parker RL (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seafloor magnetic anomalies. Nature 408:827–832ADSCrossRefGoogle Scholar
  9. 9.
    Snowball I, Muscheler R (2007) Palaeomagnetic intensity data: an Achilles heel of solar activity reconstruction. Holo 17:851–859 CrossRefGoogle Scholar
  10. 10.
    Vonmoos M, Beer J, Muscheler R (2006) Large variation ns in Holocene solar activity: constraints from 10Be in the Greenland Ice Core project ice core. J Geophys Res 111, A10105, doi:  10.1029/2005JA011500 ADSCrossRefGoogle Scholar
  11. 11.
    VanCuren RA, Cahill T, Burkhart J, Barnes D, Zhao Y, Perry K, Cliff S, McConnell J (2012) Aerosols and their sources at SummitGreenland—First results of continuous size- and time-resolved sampling. Atmos Env 52:82–97CrossRefGoogle Scholar
  12. 12.
    Langen PL, Vinther BM (2009) response in atmospheric circulation and sources of Greenland precipitation to glacial boundary conditions. Clim Dyn 32:1035–1054CrossRefGoogle Scholar
  13. 13.
    Beer J (2000) Long-term indirect indices of solar variability Space Sci Rev 984:53–66 ADSCrossRefGoogle Scholar
  14. 14.
    Heikkilä U, Beer J, Abreu JA, Steinhilber F (2011) On the atmospheric transport and deposition of the cosmogenic radionuclides (10Be): a review. Space Sci Rev, doi:  10.1007/s11214-011-9838-0 Google Scholar
  15. 15.
    Usoskin IG, Horiuchi K, Solanki S, Kovaltsov GA, Bard ED (2009) On the common signal in different cosmogenic isotope data sets. J Geophys Res 114, A03112, doi:  10.1029/2008JA013888 CrossRefGoogle Scholar
  16. 16.
    Webber WR, Higbie PR (2010) A comparison of new calculations of 10Be production in the Earths polar atmosphere by cosmic rays with 10Be concentration measurements in polar ice cores between 1939–2005–A troubling lack of concordance: Paper #1. http://arxiv.org/abs/1003.4989
  17. 17.
    Lal D, Lingenfelter RE 1991 History of the sun during the past 4.5 Gyr as revealed by studies of energetic solar particles recorded in extraterrestrial and terrestrial samples. In Sonett CP, Giampapa MS, Matthews MS (eds) The Sun in time. Univ of Arizona Press, AZGoogle Scholar
  18. 18.
    Yiou F et al (1997) 10Be in the Greenland Ice Core Project ice core at Summit, Greenland. J Geophys Res 102:26,783–26,794Google Scholar
  19. 19.
    Raisbeck GM, Yiou F, Cattani O, Jouzel J (2006) 10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core. Nature 444:82–84. doi:  10.1038/nature05266 ADSCrossRefGoogle Scholar
  20. 20.
    Raisbeck GM, Yiou F, Cattani O, Jousel J (2005) “Spikes” of 10Be in 700 Ky old ice from EPICA Dome C climatic or cosmic? Geophys Res Abs 7: 09466Google Scholar
  21. 21.
    Jouzel J and 31 others (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793–797Google Scholar
  22. 22.
    Reid JS (2010) A re-examination of ice age time series. At http://www.scienceheresy.com/2010_09/iceages/IceAgePaper.pdf
  23. 23.
    Khare N, Govil P, Kumar P, Mazumder A, Chopra S, Pattanaik JK, Balakrishnan S, Roonwal GS (2011) 10Be as paleoclimatic tracer: initial results from south western Indian Ocean sediments. J Radioanal Nucl Chem 290:197–201CrossRefGoogle Scholar
  24. 24.
    Head MJ, Gibbard PL (2005) Early-Middle Pleistocene transitions: an overview and recommendations for the defining boundary. Geol Soc Lond, Spec Pub 247:1–18, doi:  10.1144/GSL.SP.2005.247.01.01 CrossRefGoogle Scholar
  25. 25.
    Goswami JN, Jha R, Lal D (1981) Long Term Variations in Solar Flare Activity. J Astrophys Astr 2:201–212ADSCrossRefGoogle Scholar
  26. 26.
    Lario D, Simnett GM (2004) Solar energetic particle variation. In Pap JM, Fox P (erds) Solar variability and its effects on climate. AGU, DCGoogle Scholar
  27. 27.
    Usoskin IG, Solanki SK, Kovaltsov GA, Beer K, Kromer B (2006b) Solar proton events in cosmogenic isotope data. Geophys Res Lett 33, L08107, doi: 10.1029/2006GL026059
  28. 28.
    LaViolette PA (2011) Evidence for a large flare cause of the Pleistocene mass extinction. Radiocarbon 53:303–323Google Scholar
  29. 29.
    McCracken KG, Dreschhoff GAM, Smart DF, Shea MA (2001) Solar cosmic ray events for the period 1561-1994: 2. The Gleissberg periodicity. J Geophys Res 106:21,599–21,609ADSCrossRefGoogle Scholar
  30. 30.
    Gladysheva OG, Kocharov GE, Kovaltsov GA, Usoskin IG (2002) Nitrate abundance in polar ice during the great solar activity minimum. Adv Space Sci 29:1707–1711ADSCrossRefGoogle Scholar
  31. 31.
    Kocharov GED, Ogurtsov MG, Dreschhoff GAM (1999) On the quasi-five year variation of nitrate abundance in polar ice and solar flare activity in the past. Solar Phys 188:187–190ADSCrossRefGoogle Scholar
  32. 32.
    Wolff EW, Bigler M, Curran MA, Dibb JE, Frey MM, Legrand MR, McConnell JR (2012) The Carrington event not observed in most ice core nitrate records. Geophys Res Lett 39:L08503, doi:  10.1029/2012GL051603 CrossRefGoogle Scholar
  33. 33.
    Schwenn R (2006) Space weather: the solar perspective. www.livingreviews.org/lrsp-2006-2
  34. 34.
    Wolff EW, Jones AE, Bauguitte S J-B, Salmon RA (2008) The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements, Atmos. Chem Phys 8:5627–5634, doi: 10.5194/acp-8-5627-2008 ADSCrossRefGoogle Scholar
  35. 35.
    Mironova IA, Uosokin IG, Kovaltsov GA, Petelina SV (2012) Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence. Atmos Chem Phys 12:769–778, doi: 10.5194/acp-12-769-2012F ADSCrossRefGoogle Scholar
  36. 36.
    Tobiska WK, Woods T, Eparvier F, Viereck R, Floyd L, Bouwer D, Rottman G, White OR (2000) The SOLAR2000 empirical solar irradiance model and forecast tool. J Atmos Solar-Terr Phys 62:1233–1250ADSCrossRefGoogle Scholar
  37. 37.
    Aldahan A, Possnert G, Johnsen SJ, Clausen HB, Isaksson E, Karlen W, Hansson M, J. (1998) A 60 year long 10Be record form Greenland and Antarctica. Earth Syst Sci 107:139–147Google Scholar
  38. 38.
    Finkel RC, Nishiizumi K (1997) Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3–40 ka. J Geophys Res 102:26,699–26,706, doi: 10.1029/97JC01282 ADSCrossRefGoogle Scholar
  39. 39.
    Raisbeck GM, Yiou F, Fruneau M, Loiseaux JM, Lieuvin M, Ravel JC, Lorius C (1981) Cosmogenic 10Be concentrations in Antarctic ice during the past 30,000 years. Nature 292:825–826, doi: 10.1038/292825a0 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of MineralogyNatural History MuseumLondonUK

Personalised recommendations