Skip to main content

The Young Sun

  • Chapter
  • First Online:
Book cover Solar History

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 1170 Accesses

Abstract

Meteorites and the Moon yield information on solar flares and the solar wind which, though patchy, spans 109 yr. However, as the solar wind and flares are primarily creatures of the corona they are poor measures of solar activity as a whole. According to the Standard Solar Model the Sun’s luminosity has increased from 0.7 to 1.0 L in the course of the last 4.5 Gyr. The widespread presence of liquid water on the Earth’s surface at least during the last 3.8 Gyr conflicts with this finding. Various mechanisms have accordingly been proposed for warming the early Earth, including atmospheric greenhouse effects, variations in cloud cover, and the prevalence of oceans with a low albedo. Changes in the mass of the early Sun and in its activity have also been suggested in order to reconcile the SSM with the geological evidence on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sofia S (2004) Variations of total solar irradiance produced by structural changes of the solar interior. EOS Trans Am Geophys Un 85:217

    Google Scholar 

  2. Bhandari N (1997) The Sun through time: the lunar and planetary perspective. In: Cini Castagnoli G, Provenzale A (eds) Past and present variability of the solar-terrestrial system. IOS, Amsterdam

    Google Scholar 

  3. Shibata K, Magara T (2011) Solar flares: magnetohydrodynamic processes. Living Rev Solar Phys 8:1–99

    Google Scholar 

  4. De Pater I, Lissauer JJ (2001) Planetary sciences. Cambridge University Press, Cambridge

    Google Scholar 

  5. Runcorn K (1983) Lunar magnetism, polar displacements and primeval satellites in the Earth–Moon system. Nature 304:589–596

    Article  ADS  Google Scholar 

  6. Goswami JN (1991) Solar flare heavy-ion tracks in extraterrestrial objects. In: Sonett CP, Giampapa MS, Matthews MS (eds) The Sun in time. University of Arizona, Tucson

    Google Scholar 

  7. Crawford IA, Fagents SA, Joy KH, Rumpf ME (2010) Lunar palaeoregolith deposits as recorders of the galactic environment of the solar system and implications for astrobiology. Earth Moon Plan. doi 10.1007/s11038-010-9358-z

    Google Scholar 

  8. Newman MJ, Rood RT (1977) Implications of solar evolution for Earth’s early atmosphere. Science 198:1035–1037

    Article  ADS  Google Scholar 

  9. Gough DO (1981) Solar interior structure and luminosity variations. Solar Phys 74:21–34

    Article  ADS  Google Scholar 

  10. Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56. doi:10.1126/science.177.4043.52

    Article  ADS  Google Scholar 

  11. Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geosci 4:698–702

    Google Scholar 

  12. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Google Scholar 

  13. Abramov O, Mojzsis S (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459:419–422. doi:10.1038/nature08015

    Article  ADS  Google Scholar 

  14. Hoffman PF, Jaufman AJ, Halverson GP, Schrag DP (1998) A neoproterozoic snowball Earth. Science 281:1342–1356. doi: 10.1126/science.281.5381.1342

    Article  ADS  Google Scholar 

  15. Sagan C, Chyba C (1997) The Early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221. doi: 10.1126/science.276.5316.1217

    Article  ADS  Google Scholar 

  16. Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res 105:11981–11990

    Article  ADS  Google Scholar 

  17. Robertson AL, Roadt J, Halevy I, Kasting JF (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9:313–320

    Article  Google Scholar 

  18. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting FJ (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiol 8:1127–1137. doi: 10.1089/ast.2007.0197

    Article  ADS  Google Scholar 

  19. Kasting JE, Grinspoon DH (1991) The faint young Sun problem. In: Sonett CP, Giampapa MS, Matthews MS (eds) The Sun in time. University Arizona, Tucson

    Google Scholar 

  20. Rye R, Kuo PH, Holland HD (1995) Atmospheric carbon dioxide concentrations before 2.2-billion years ago. Nature 378:603–605

    Article  ADS  Google Scholar 

  21. Owen T, Cess RD, Ramanathan V (1979) Enhanced CO2 greenhouse to compensate for reduced solar luminosity on early Earth. Nature 277:640–642. doi:10.1038/277640a0

    Article  ADS  Google Scholar 

  22. Paris P von, Rauer H, Grenfell L, Patzer B, Hedelt P, Stracke B, Trautmann T, Schreier F (2008) Warming the early Earth—CO2 reconsidered. Planet Space Sci 56:1244–1259. doi: 10.1016/j.pss.2008.04.008

    Article  ADS  Google Scholar 

  23. Zahnle K, Schaefer L, Fegley B (2010) Earth’s earliest atmospheres. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a004895

  24. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747. doi 10.1038/nature08955

    Article  ADS  Google Scholar 

  25. Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the faint early Sun. Nature 464:744–747. doi 10.1038/nature08955

    Google Scholar 

  26. Minton DA, Malhotra R (2007) Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle. Astrophys J 660:1700–1706. doi: 10.1086/514331

    Article  ADS  Google Scholar 

  27. Shaviv NJ (2003) Towards a solution to the early faint Sun paradox: a lower cosmic ray flux from a stronger solar wind. J Geophys Res 108. doi: 10.1029/2003JA009997

  28. Karoff C, Svensmark H (2010) How did the Sun affect the climate when life evolved on the Earth?—A case study on the young solar twin k 1 Ceti. arXiv:1003.6043v1 In press for Astron Nachr

    Google Scholar 

  29. Ribas I, de Mello GFP, Ferreira LD, Hebrard E, Selsis F, Catalan S, Garces A, do Nascimento JD Jr, de Medeiros JR (2010) Evolution of the solar activity over time and effects on planetary atmospheres. II. Kappa1 Ceti, an analog of the Sun when life arose on Earth. Astrophys J 714:384–395. doi: 10.1088/0004-637X/714/1/384

    Google Scholar 

  30. Bahcall JN, Pinsonneault MH, Basu S (2001) Solar models: current epoch and time dependencies, neutrinos, and helioseismological properties. Astrophys J 555:990–1012

    Article  ADS  Google Scholar 

  31. Chaplin WJ, Basu D (2008) Perspectives in solar helioseismology and the road ahead. Solar Phys 251:53–75. doi: 10.1007/s11207-008-9136-5

    Article  ADS  Google Scholar 

  32. Manuel O, Friberg S (2003) Composition of the solar interior: information from isotope ratios. In: Lacoste H (ed) Local and global helioseismology, ESA SP-517

    Google Scholar 

  33. Krauss LM (1990) Correlation of solar neutrino modulation with solar cycle variation in p-mode acoustic spectra. Nature 348:403–407. doi 10.1038/348403a0

    Article  ADS  Google Scholar 

  34. Boger J, Hahn RL, Rowley JK (2000) Do statistically significant correlations exist between the Homestake solar neutrino data and sunspots? Astrophys J 537:1080–1085

    Article  ADS  Google Scholar 

  35. Ohmoto H, Watanabe Y, Kumazawa K (2004) Evidence from massive siderite beds for a CO2-rich atmosphere before ~1.8 billion years ago Nature 429:395–399

    Article  ADS  Google Scholar 

  36. Kasting JF (2010) Faint young Sun redux. Nature 464:687–689

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vita-Finzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Vita-Finzi, C. (2013). The Young Sun. In: Solar History. SpringerBriefs in Astronomy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4295-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4295-6_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4294-9

  • Online ISBN: 978-94-007-4295-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics