Skip to main content

Role of Induced Pluripotent Stem Cells in Regenerative Medicine

  • Chapter
  • First Online:
  • 1183 Accesses

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 7))

Abstract

Induced pluripotent stem (iPS) technology was first reported by Takahashi and Yamanaka (Cell 126:663–676, 2006) and has since received much attention. These murine iPS cells are similar to embryonic stem cells (ESCs) in many aspects such as gene expression patterns and teratoma formation, except that they originated from somatic cells. Since the pioneer report, the technology has progressed to include many various approaches of reprogramming, such as using viral vectors, plasmids, RNA and proteins. Each approach has its own pros and cons in terms of safety and efficiency, which affect its potential to be translated into the clinical setting. In 2007, two separate groups – Yu et al. (Science 318:1917–1920, 2007) and Takahashi et al. (Cell 131:861–872, 2007) – reported the successful reprogramming of adult human somatic cells into iPS cells, hence sparking hope in developmental biology, pharmacological testing and regenerative medicine. Especially in regenerative medicine, iPS cells are envisaged to be utilized due to their self-renewal and pluripotency – problems of low cell numbers associated with current regenerative approaches can be resolved using iPS cells without the controversy of using ESCs. Here, we discuss the various reprogramming techniques and the myriad of studies on regenerating functional cells and tissues using iPS cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc Natl Acad Sci USA 107:13426–13431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S, Nishikawa SI (2011) Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive sendai virus vectors. Proc Natl Acad Sci USA 108:14234–14239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bilousova G, Jun DH, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29:206–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21:518–529

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111:769–781

    Article  CAS  PubMed  Google Scholar 

  • Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang M, Lv L, Ji H, Yang X, Zhu W, Cai L, Gu X, Chai C, Huang S, Sun J, Dong Q (2011) Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem 354:67–75

    Article  CAS  PubMed  Google Scholar 

  • Kazuki Y, Hiratsuka M, Takiguchi M, Osaki M, Kajitani N, Hoshiya H, Hiramatsu K, Yoshino T, Kazuki K, Ishihara C, Takehara S, Higaki K, Nakagawa M, Takahashi K, Yamanaka S, Oshimura M (2009) Complete genetic correction of iPS cells from duchenne muscular dystrophy. Mol Ther 18:386–393

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009a) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009b) Direct reprogramming of human neural stem cells by Oct4. Nature 461:649–653

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lapillonne H, Kobari L, Mazurier C, Tropel P, Giarratana MC, Zanella-Cleon I, Kiger L, Wattenhofer-Donze M, Puccio H, Hebert N, Francina A, Andreu G, Viville S, Douay L (2010) Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica 95:1651–1659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Kim Y, Sharkis S, Marchionni L, Jang Y-Y (2011) In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins. Sci Transl Med 3:82ra39

    Article  PubMed Central  PubMed  Google Scholar 

  • Medvedev SP, Grigor’Eva EV, Shevchenko AI, Malakhova AA, Dementyeva EV, Shilov AA, Pokushalov EA, Zaidman AM, Aleksandrova MA, Plotnikov EY, Sukhikh GT, Zakian SM (2011) Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev 20:1099–1112

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8:633–638

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Sano M, Ohtaka M, Furuta B, Umemura Y, Nakajima Y, Ikehara Y, Kobayashi T, Segawa H, Takayasu S, Sato H, Motomura K, Uchida E, Kanayasu-Toyoda T, Asashima M, Nakauchi H, Yamaguchi T, Nakanishi M (2011) Development of defective and persistent sendai virus vector: a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 286:4760–4771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rhee YH, Ko JY, Chang MY, Yi SH, Kim D, Kim CH, Shim JW, Jo AY, Kim BW, Lee H, Lee SH, Suh W, Park CH, Koh HC, Lee YS, Lanza R, Kim KS (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 121:2326–2335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Somers A, Jean JC, Sommer CA, Omari A, Ford CC, Mills JA, Ying L, Sommer AG, Jean JM, Smith BW, Lafyatis R, Demierre MF, Weiss DJ, French DL, Gadue P, Murphy GJ, Mostoslavsky G, Kotton DN (2010) Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells 28:1728–1740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009) Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543–549

    Article  CAS  PubMed  Google Scholar 

  • Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, Hoskins EE, Kalinichenko VV, Wells SI, Zorn AM, Shroyer NF, Wells JM (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki H, Shibata R, Kito T, Ishii M, Li P, Yoshikai T, Nishio N, Ito S, Numaguchi Y, Yamashita JK, Murohara T, Isobe K (2010) Therapeutic angiogenesis by transplantation of induced pluripotent stem cell-derived flk-1 positive cells. BMC Cell Biol 11:72

    Article  PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Adjaye J (2011) A cyclic AMP analog, 8-Br-cAMP, enhances the induction of pluripotency in human fibroblast cells. Stem Cell Rev 7:331–341

    Article  CAS  PubMed  Google Scholar 

  • Wang AJ, Tang ZY, Park IH, Zhu YQ, Patel S, Daley GQ, Li S (2011) Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32:5023–5032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung H-K, Nagy A (2009) Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie C, Hu J, Ma H, Zhang J, Chang LJ, Chen YE, Ma PX (2011) Three-dimensional growth of iPS cell-derived smooth muscle cells on nanofibrous scaffolds. Biomaterials 32:4369–4375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye JH, Xu YJ, Gao J, Yan SG, Zhao J, Tu Q, Zhang J, Duan XJ, Sommer CA, Mostoslavsky G, Kaplan DL, Wu YN, Zhang CP, Wang L, Chen J (2011) Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and satb2-modified iPSCs. Biomaterials 32:5065–5076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6:e17557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang F, Citra F, Wang DA (2011a) Prospects of induced pluripotent stem cell technology in regenerative medicine. Tissue Eng Part B Rev 17:115–124

    Article  PubMed  Google Scholar 

  • Zhang S, Chen S, Li W, Guo X, Zhao P, Xu J, Chen Y, Pan Q, Liu X, Zychlinski D, Lu H, Tortorella MD, Schambach A, Wang Y, Pei D, Esteban MA (2011b) Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet 20:3176–3187

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667–2674

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang W, Liu Y, de Castro JF, Ezashi T, Telugu BP, Roberts RM, Kaplan HJ, Dean DC (2011) Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells 29:972–980

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-An Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leong, W., Wang, DA. (2012). Role of Induced Pluripotent Stem Cells in Regenerative Medicine. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 7. Stem Cells and Cancer Stem Cells, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4285-7_2

Download citation

Publish with us

Policies and ethics