Advertisement

Production Variables Influencing the Fatigue Behaviour of Riveted Lap Joints

  • Andrzej Skorupa
  • Małgorzata Skorupa
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 189)

Abstract

A large number of production variables can affect the fatigue behaviour of a riveted joint. Among these, the most important are the sheet material, the fastener type and material, and the manufacturing process. The influence of the above factors on lap joint fatigue properties is reviewed in this chapter.

Keywords

Fatigue Life Sheet Material Hole Expansion Rivet Process Squeeze Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atre, A.: A finite element and experimental investigation on the fatigue of riveted lap joints in aircraft applications. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, (2006)Google Scholar
  2. Bakuckas, J.G., Jr., Mosinyi, B., Steadman, D., Awerbuch, J., Lau, A.C., Tan, T.-M.: Teardown inspection and extended fatigue test of fuselage lap joints from retired passenger service airplane. In: Lazaretti L., Salvetti S. (eds.) Proceedings of 24th ICAF Symposium, Durability and Damage Tolerance of Aircraft Structures; Metals vs Composites, Naples, Italy, 16–18 May 2007, pp. 749–768. Publ. Pacini, Naples (2007)Google Scholar
  3. Barret, R.T.: Fastener design manual. NASA Reference Publication 1228 (1990)Google Scholar
  4. Chakherlou, T.N., Vogwell, J.: The effect of cold expansion on improving the fatigue life of fastener holes. Eng. Fail. Anal. 10, 13–24 (2003)CrossRefGoogle Scholar
  5. Chakherlou, T.N., Mirzajanzadech, M., Saaedi, K.H.: Fatigue crack growth and life prediction of a single interference fitted holed plate. Fatigue Fract. Eng. Mater. Struct. 33, 632–644 (2010)Google Scholar
  6. de Rijck, J.J.M.: Stress analysis of fatigue cracks in mechanically fastened joints. An analytical and experimental investigation. Ph.D. thesis, TU Delft, Delft (2005)Google Scholar
  7. de Rijck, J.J.M., Homan, J.J., Schijve, J., Benedictus, R.: The driven rivet head dimensions as an indication of the fatigue performance of aircraft lap joints. Int. J. Fatigue 29, 2208–2218 (2007)CrossRefGoogle Scholar
  8. Feeney, J.A., Mc Millan, J.C., Wei, R.P.: Environmental fatigue crack propagation of aluminium alloys at low stress intensity levels. Metall. Trans. 1, 1741–1757 (1970)CrossRefGoogle Scholar
  9. Fredell, R.S.: Damage tolerant repair techniques for pressurized aircraft fuselages. Ph.D. thesis, TU Delft, Delft (1994)Google Scholar
  10. Gadalińska, E., Kaniowski, J., Wojtas, A.: Stress measurements with X-ray diffractometry of aluminium alloys. Determination of the most optimized parameters of the measurement. In: Boss, M.J. (ed.) Proceedings of 25th ICAF Symposium, Bridging the Gap between Theory and Practice, Rotterdam, The Netherlands, 27–29 May 2009, pp. 1285–1304. Springer, Dordrecht/Heidelberg/London/New York (2009)Google Scholar
  11. Giummarra, C., Zoker, R.: Improving the fatigue response of aerospace structural joints. In: Donne, C.D. (ed.) Proceedings of 23rd ICAF Symposium, Structure Integrity of Advanced Aircraft and Life Extension for Current Fleets. Lesson Learned in 50 Years After the Comet Accidents, Hamburg, Germany, 8–10 June 2005, pp. 445–456. EMAS, Warley (2005)Google Scholar
  12. Harish, G., Farris, T.N., Wang, H.L., Grandt, A.F.: Nucleation and growth of cracks in lap joints. In: 1999 USAF Aircraft Structural Integrity Program Conference, 30 Nov–2 Dec 1999, San Antonio, TX, pp. 1–14Google Scholar
  13. Hartman, A.: A comparative investigation on the investigation on the influence of sheet thickness, type of rivet and number of rivet rows on the fatigue strength at fluctuating tension of riveted single lap joints of 24 ST Alclad sheet and 17 S rivets. Report NLR M.1943. NLR, Amsterdam (1954)Google Scholar
  14. Hartman, A.: The influence of manufacturing procedures on the fatigue life of 2024-T3 Alclad riveted single lap joints. Report NLR TR 68072 U. NLR, Amsterdam (1968)Google Scholar
  15. Hartman, A., Duyn, G.C.: A comparative investigation on the fatigue strength at fluctuating tension of several types of riveted lap joints, a series of bolted and some series of glued lap joints of 24 ST Alclad. Report NLR M.1857. NLR, Amsterdam (1952)Google Scholar
  16. Hartman, A., Klaassen, W.: The fatigue strength at fluctuating tension of simple lap joints of clad 24 ST and 75 ST aluminium alloy with 2 rows of 17 S rivets. Report NLR M.2011. NLR, Amsterdam (1956)Google Scholar
  17. Hartman, A., Jacobs, F.A., van der Vet, W.J.: Constant amplitude and programme fatigue tests on single lap joints in clad 2024-T3 and 7075-T6 aluminium alloy with two rows of rivets or huckbolts. Report NLR TN M.2147. NLR, Amsterdam (1965)Google Scholar
  18. Hertel, H.: Ermüdungsfestigkeit der Konstruktionen. Springer, Berlin/Heidelberg/New York (1969)Google Scholar
  19. Hoffer, K.: Permanent Fasteners for Light-Weight Structures. Aluminium Verlag, Düsseldorf (1984)Google Scholar
  20. Homan, J.J.: Mechanically fastened joints. Lecture Notes ae4-740. TU Delft, Faculty of Aerospace Engineering, Delft (2008)Google Scholar
  21. Jarfall, L.: Shear loaded fastener installation. Int. J. Veh. Des. 7, 337–379 (1986)Google Scholar
  22. Jaya, A., Tiong, V.H., Clark, G., Swift, S., Trathen, P.: A review on the effect of corrosion inhibitors on the fatigue performance of riveted joints. In: Jackson P., Trasteli Ch. (ed.) A Review of Australian and New Zeeland Investigation on Aeronautical Fatigue During the Period April 2009 to March 2011. Presented on 26th ICAF Symposium, 29 May–3 June 2011, Montreal, Canada, pp. 8–9 (2011)Google Scholar
  23. Krasnowski, B.R., Reddy, D.J., Franada, B.G., Reid, L., Restis, J.: Fatigue strength and damage tolerance of thin sheet riveted lap/splice joints with cold-expanded holes. In: Rouchon, J. (ed.) Proceedings of 21st ICAF Symposium, Design for Durability in the Digital Age, Toulouse, France, 27–29 June 2001, pp. 195–207. Publication: Cépaduès-Edition, Touluse (2001)Google Scholar
  24. Leon, A.: Benefits of split mandrel cold working. Int. J. Fatigue 20, 1–8 (1988)MathSciNetCrossRefGoogle Scholar
  25. Li, G., Shi, G.: Investigation of residual stress in riveted lap joints: experimental study. LTR-SMPL-2003-0099 Report. Institute for Aerospace Research, NRC, Ottawa (2003)Google Scholar
  26. Li, G., Shi, G.: Effect of the riveting process on the residual stress in fuselage lap joints. Can. Aeronaut. Space J. 50, 91–105 (2004a)CrossRefGoogle Scholar
  27. Li, G., Shi, G.: Investigation of residual stress/strain in lap joints with a single countersunk rivet. LTR-SMPL-2004-0130 Report. Institute for Aerospace Research, NRC, Ottawa (2004b)Google Scholar
  28. Li, G., Shi, G., Bellinger, N.C.: Neutron diffraction measurement and FE simulation of residual strains and stress in fuselage lap joints. LTR-SMPL-2004-0003 Report. Institute for Aerospace Research, NRC, Ottawa (2004)Google Scholar
  29. Li, G., Shi, G., Bellinger, N.C.: Study of the residual strain in lap joints. J. Aircr. 43, 1145–1151 (2006)CrossRefGoogle Scholar
  30. Li, G., Shi, G., Bellinger, N.C.: Residual stress/strain in three-row, countersunk, riveted lap joints. J. Aircr. 44, 1275–1285 (2007)CrossRefGoogle Scholar
  31. Li, G., Shi, G., Bellinger, N.C.: Stress in triple-row riveted lap joints under the influence of specific factors. J. Aircr. 48, 527–539 (2011)CrossRefGoogle Scholar
  32. Müller, R.P.G.: An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints. The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3. Ph.D. thesis, TU Delft, Delft (1995)Google Scholar
  33. Müller, R.P.G., Hart-Smith, L.J.: Making fuselage riveted lap splices with 200-year crack-free-lives. In: Cook, R., Poole, P. (eds.) Proceedings of 19th ICAF Symposium, Fatigue in New and Aging Aircraft, Edinburgh, Scotland, 18–20 June 1997, pp. 499–522. EMAS, Warley (1997)Google Scholar
  34. Nesterenko, B.G., Nesterenko, G.I., Basow, V.N.: Fracture behaviour of skin materials of civil airplane structures. In: Boss, M.J. (ed.) Proceedings of 25th ICAF Symposium, Bridging the Gap between Theory and Practice, Rotterdam, The Netherlands, 27–29 May 2009, pp. 661–683. Springer, Dordrecht/Heidelberg/London/New York (2009)Google Scholar
  35. Niu, M.C.Y.: Airframe Structural Design. Practical Information and Data on Airframe Structures. Conmilit Press Ltd., Hong Kong (1988)Google Scholar
  36. Oldersma, A.: Fatigue of riveted joints. A literature survey and statistical analysis of existing test data. Report NLR CR 92401 L. NLR, Amsterdam (1992)Google Scholar
  37. Oldersma, A., Wanhill, R.J.H.: Variability of fatigue crack growth properties for 2024 T-3 aluminium alloy. Report NLR TP 96038 L. NLR, Amsterdam (1966)Google Scholar
  38. Ottens, H.H., Wanhill, R.J.H.: Review of aeronautical fatigue investigations in the Netherlands during the period March 2001–March 2003. Presented on 22nd ICAF symposium, fatigue of aeronautical structures as an engineering challenge, Lucerne, Switzerland, 7–9 May 2003, pp. 4–5 (2003)Google Scholar
  39. Park, J.H., Atluri, S.N.: Fatigue growth of multiple cracks near a row of fasteners holes in a fuselage lap-joint. Comput. Mech. 13, 47–63 (1993)CrossRefGoogle Scholar
  40. Ralf, W.C., Johnson, W.S., Toivonen, P., Makeev, A., Newman, J.C., Jr.: Assessment of residual stresses and hole quality on the fatigue behavior of aircraft structural joints, vol. 2, Fastener hole drilling quality and fatigue lives. DOT/FAA/AR-07/56, V.2 (Mar 2009)Google Scholar
  41. Rans, C.D.: The role of rivet installation on the fatigue performance of riveted lap joints. Ph.D. dissertation, Carleton University, Ottawa (2007)Google Scholar
  42. Rans, C., Straznicky, P.V., Alderliesten, R.: Riveting process induced residual stress around solid rivets in mechanical joints. J. Aircr. 44, 323–329 (2007b)CrossRefGoogle Scholar
  43. Rodman, G.A., Creager, M.: Split mandrel vs split sleeve coldworking: dual methods for extending the fatigue life of metal structures. In: Harris, Ch.E. (ed.) Proceedings of FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, Hampton, VA, 4–6 May 1994, NASA-CP-3274, pp. 1078–1086 (1994)Google Scholar
  44. Schijve J.: The fatigue strength of riveted joints and lugs. Technical Memorandum 1935. National Advisory Committee for Aeronautics, Washington, D.C (1956)Google Scholar
  45. Schijve, J.: The fatigue life of unnotched and notched 2024-T3 Alclad sheet material from different manufacturers. Report NLR TR 68093U. NLR, Amsterdam (1968)Google Scholar
  46. Schijve, J.: Some considerations on the correlation between the rivet squeezing force and the dimensions of the driven head. Memorandum M-847. TU Delft, Faculty of Aerospace Engineering, Delft (2005)Google Scholar
  47. Schijve, J.: Riveted lap joints with staggered thickness in the overlap of the joint. Calculation of secondary bending. Doc. B2-06-02. TU Delft, Faculty of Aerospace Engineering, Delft (2006)Google Scholar
  48. Schijve, J.: Fatigue of Structures and Materials, 2nd edn. Springer, Dordrecht/Heidelberg/London/New York (2009a) (with CD-Rom)CrossRefGoogle Scholar
  49. Schijve, J.: Fatigue damage in aircraft structures, not wanted, but tolerated? Int. J. Fatigue 31, 998–1011 (2009b)zbMATHCrossRefGoogle Scholar
  50. Schijve, J., de Rijk, P.: The fatigue crack propagation in 2024 T-3 Alclad sheet materials from seven different manufacturers. Report NLR M.2162. NLR, Amsterdam (1966)Google Scholar
  51. Schijve, J., Jacobs, F.A., Tromp, P.J.: The significance of cladding for fatigue of aluminium alloys in aircraft structures. Report NLR TR 76065 C. NLR, Amsterdam (1976)Google Scholar
  52. Schijve, J., Jacobs, F.A., Meulman, A.E.: Effect of an anti-corrosion penetrant on the fatigue life in flight-simulation tests on various riveted joints. Report NLR TR 77103 U. NLR, Amsterdam (1977)Google Scholar
  53. Schijve, J., Skorupa, M., Skorupa, A., Machniewicz, T., Gruszczyński, P.: Fatigue crack growth in the aluminium alloy D16 under constant and variable amplitude loading. Int. J. Fatigue 26, 1–15 (2004)CrossRefGoogle Scholar
  54. Schmidt, H.-J., Brandbecker, B.: The effect of environmental conditions and load frequency on the crack initiation life and crack growth in aluminium structure. In: Bigelow, C.A. (ed.) Proceedings of FAA/NASA Symposium on Continued Airworthiness of Aircraft Structures, Atlanta, GA, 28–30 Aug 1996, DOT/FAA/AR-97/1, pp. 171–182 (1997)Google Scholar
  55. Schra, L., Ottens, H.H., Vlieger, H.: Fatigue crack growth in simulated Fokker 100 lap joints under MSD and SSD conditions. Report NLR CR 95729 C. NLR, Amsterdam (1995)Google Scholar
  56. Schütz, W.: Zeitfestigkeit einschnittiger Leichtmetall-Nietverbindungen. Bericht Nr. F-47. Laboratorium für Betriebsfestigkeit, Darmstadt (1963)Google Scholar
  57. Schütz, D., Lowak, H.: Die Berücksichtigung des Einflusses der Sekundär-Biegung auf die Schwingfestigkeit von Fügungen. Bericht Nr FB-113. Laboratorium für Betriebsfestigkeit, Darmstadt (1974). Also available as: Schütz, D., Lowak, H.: The effect of secondary bending on the fatigue strength of joints. Report FB-113. Laboratorium für Betriebsfestigket, Darmstadt (1974), RAE Library Translation No. 185Google Scholar
  58. Simpson, A.: The use of modern fastening systems to enhance the fatigue life of thin sheet structures. In: Berkovits, A (ed.) Proceedings of 15th ICAF Symposium, Aeronautical Fatigue in the Electronic Era, Jerusalem, Israel, 21–23 June 1989, pp. 243–262. EMAS, Warley (1989)Google Scholar
  59. Skorupa, M., Skorupa, A., Machniewicz, T., Korbel, A.: An experimental investigation on the fatigue performance of riveted lap joint. In: Boss, M.J. (ed.) Proceedings of 25th ICAF Symposium, Bridging the Gap between Theory and Practice, Rotterdam, The Netherlands, 27–29 May 2009, pp. 449–473. Springer, Dordrecht/Heidelberg/London/New York (2009)Google Scholar
  60. Skorupa, M., Skorupa, A., Machniewicz, T., Korbel, A.: Effect of production variables on the fatigue behaviour of riveted lap joints. Int. J. Fatigue 32, 996–1003 (2010b)CrossRefGoogle Scholar
  61. Sławiński, G., Niezgoda, T., Szymczyk, E., Jachimowicz, J.: Numerical study of the influence of shape imperfections on residual stress fields in a rivet hole. J. KONES Powertrain Transp. 17, 427–434 (2010)Google Scholar
  62. Smith, C.R.: Fatigue resistance. Design considerations. Aircr. Eng. 1960, 142–144 (1960)CrossRefGoogle Scholar
  63. Starikow, R.: Mechanically fastened joints. Critical testing of single overlap joints. Scientific Report FOI-R-0441-SE. Swedish Defense Research Agency, Aeronautics Division, FAA, Stockholm (2002)Google Scholar
  64. Swift, T.: Damage tolerance in pressurized fuselages. In: Simpson, D.L. (ed.) Proceedings of 14th ICAF Symposium, New Materials and Fatigue Resistant Aircraft Design, Ottawa, Canada, 8–12 June 1987. 11th Plantema Memorial Lecture, pp. 1–77. EMAS, Warley (1987)Google Scholar
  65. Szymczyk, E., Sławiński, G., Jachimowicz, J., Derewońko, A.: Comparison of the riveting process of a rivet with and without a compensator. J. KONES Powertrain Transp. 16, 415–422 (2009)Google Scholar
  66. Vlieger, H., Ottens, H.H.: Uniaxial and biaxial tests on riveted fuselage lap joint specimens. Report NLR CR 97319 L. NLR, Amsterdam (1998)Google Scholar
  67. Wang, H.L.: Evaluation of multiple site damage in lap joint specimens, Ph.D. dissertation, Purdue University, West Lafayette, IN (1998)Google Scholar
  68. Wanhill, R.J.H.: Some practical considerations for fatigue and corrosion damage assessment of ageing aircraft. Report NLR TP 96253 L. NLR, Amsterdam (1996)Google Scholar
  69. Wronicz, W., Kaniowski, J.: Numerical analysis of riveted lap joint used in aircraft structure. In: Niepokólczycki, A. (ed.) Fatigue of Aircraft Structures. Monographic Series. Issue 2010, pp. 106–116. Institute of Aviation Scientific Publications, Warsaw (2010)Google Scholar
  70. Zieve, P.B.: Low voltage electromagnetic riveter. In: Proceedings of FASTEC SME West ’86, Anaheim, CA, 21–23 Oct 1986 (1986)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Andrzej Skorupa
    • 1
  • Małgorzata Skorupa
    • 1
  1. 1.Faculty of Mechanical Engineering and RoboticsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations