Skip to main content

Microtomography and Its Application in Oral and Implant Research

  • Chapter
  • First Online:
Biomedical Imaging and Computational Modeling in Biomechanics

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 4))

  • 1472 Accesses

Abstract

X-ray microtomography is a miniaturized form of traditional axial computerized tomography that allows three dimensional investigations on small radiopaque objects, with an high resolution (about 5–μm), in a non-invasive and non-destructive way.

Compared with the conventional electronical and microscopical techniques that produce only bidimensional images, microCT is used to obtain a three dimensional analysis of a sample with no need to cut and no need of particular chemical treatments at all.

Therefore, X-ray 3D microtomography may satisfy the ideal requirements of 3D microscopy:

  • Investigation of a sample without preparation or alterations;

  • Production of non-invasive, non-destructive 3D images with a sufficient magnification;

  • Effectiveness of measurements of internal structure’s numerical features (morphology, structure and ultra-structure)

This justifies the application of this innovative technique not only in medicine and odontostomatology, but also in biomedical engineering, material science, biology, electronic, geology, archeology, petroleum and semiconductors industries.

In this section of the book will be showed different possibilities of microtomographic applications in biomedical field:

  • Biomaterials and Bone first, will show microtomographic appliance in structural characterization during the several phases of scaffolds’ designing and manufacturing, also after their application in implantology’s bone regeneration and maxilla-facial surgery;

  • Fixture-Abutment connection characterization, in the second place, will show the results of the 3D micro-characterization analysis of fixture-abutment interface to observe no correct compliances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrektsson T (1988) A multicenter report on osseointegrated oral implants. J Prosthet Dent 60:75–84

    Article  Google Scholar 

  • Bedini R, Ioppolo P, Pecci R, Rizzo F, Di Carlo F, Quaranta M (2007) Studio in vitro sulla connessione di sistemi implantari dentali. Rapporti ISTISAN 07/7

    Google Scholar 

  • Berglundh T, GotfredsenK ZNU, Lang NP, Lindhe J (2007) Spontaneous progression of ligature induced peri-implantitis at implants with different surface roughness: an experimental study in dogs. Clin Oral Implants Res 18:655–661

    Article  Google Scholar 

  • Bianchi F, Perrotti G, Francetti L, Testori T (2002) L’estetica in implantologia. Un caso clinico di agenesia dentale. Ital Oral Surg 1(1):41–46

    Google Scholar 

  • Bickford J Jr (1981) An introduction to the design and behavior of bolted joints. Marcel Decker, New York

    Google Scholar 

  • Binon PP (1996a) The effect of eliminating implant/abutment rotational misfit on screw joint. Int J Prosthodont 9(6):511–519

    Google Scholar 

  • Binon PP (1996b) The spline implant: design, engineering, and evaluation. Int J Prosthodont 9(5):419–433

    Google Scholar 

  • Binon PP (2000) Impianti e componenti all’alba del nuovo millennio. Quintess Int 9/10:317–330

    Google Scholar 

  • Bragger U (1998) Use of radiographs in evaluating success, stability and failure in implant dentistry. Periodontol 2000 17:77–88

    Article  Google Scholar 

  • Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D (2006) Peri-implant inflammation defined by the implant-abutment interface. J Dent Res 85:473–478

    Article  Google Scholar 

  • Brunski JB (1995) Biomechanics of dental implants. In: Block MS, Kent JN (eds) Endosseus implants for maxillofacial reconstruction. Sounders, Philadelphia

    Google Scholar 

  • Burchardt H (1983) The biology of bone graft repair. Clin Orthop Relat Res 174:28–42

    Google Scholar 

  • Cancedda R, Cedola A, Giuliani A, Komlev V, Lagomarsino S, Mastrogiacomo M, Peyrin F, Rustichelli F (2007) Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 28(15):2505–2524 (Review)

    Article  Google Scholar 

  • Chiapasco M, Romeo E (2002) La riabilitazione implantoprotesica nei casi complessi. UTET, Milano

    Google Scholar 

  • Chu TM, Warden SJ, Turner CH, Stewart RL (2007) Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2. Biomaterials 28(3):459–467

    Article  Google Scholar 

  • Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA (2001) Examination of the implant-abutment interface after fatigue testing. J Prosthet Dent 85:268–275

    Article  Google Scholar 

  • Coelho AL, Suzuki M, Dibart S, Da Silva N, Coelho PG (2007) Cross-sectional analysis of the implant-abutment interface. J Oral Rehabil 34:508–516

    Article  Google Scholar 

  • Coelho PG, Sudack P, Suzuki M, Kurtz KS, Romanos GE, Silva NRFA (2008) In vitro evaluation of the implant abutment connection sealing capability of different implant systems. J Oral Rehabil 35:917–924

    Article  Google Scholar 

  • Covani U, Marconcini S, Crespi R, Barone A (2006) Bacterial plaque colonization around dental implant surfaces. Implant Dent 15:298–304

    Article  Google Scholar 

  • Cowan CM, Aghaloo T, Chou YF, Walder B, Zhang X, Soo C, Ting K, Wu B (2007) MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng 3(3):501–512

    Article  Google Scholar 

  • Di Carlo F, Marincola M, Quaranta A, Bedini R, Pecci R (2008) Analisi MicroTac di impianti a connessione conometrica. Dent Cadmos 76(3):1–6

    Google Scholar 

  • Dibart S, Warbington M, Su MF, Skobe Z (2005) In vitro evaluation of the implant-abutment bacterial seal: the locking taper system. Int J Oral Maxillofac Implants 20:732–737

    Google Scholar 

  • Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1:612–619

    Article  Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4(1):3–11

    Article  Google Scholar 

  • Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G (2006) Advanced tools for tissue engineering: scaffolds, bioreactors and signaling. Tissue Eng 12:3285–3305

    Article  Google Scholar 

  • Gielkens PF, Schortinghuis J, de Jong JR, Raghoebar GM, Stegenga B, Bos RR (2008) Vivosorb, Bio-Gide, and Gore-Tex as barrier membranes in rat mandibular defects: an evaluation by microradiography and micro-CT. Clin Oral Implants Res 19(5):516–521

    Article  Google Scholar 

  • Gratton DG, Aquilino SA, Stanford CM (2001) Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 85:47–52

    Article  Google Scholar 

  • Gross M, Abramovich I, Weiss EI (1999) Microleakage at the abutment-implant interface of osseointegrated implants: a comparative study. Int J Oral Maxillofac Implants 14:94–100

    Google Scholar 

  • Guindy JS, BesimoCE BR, Schiel H, Meyer J (1998) Bacterial leakage into and from prefabricated screw-retained implant-borne crowns in vitro. J Oral Rehabil 25:403–408

    Article  Google Scholar 

  • Guldberg RE, Duvall CL, Peister A, Oest ME, Lin AS, Palmer AW, Levenston ME (2008) 3D imaging of tissue integration with porous biomaterials. Biomaterials 29(28):3757–3761 (Epub 2008 Jul 16)

    Article  Google Scholar 

  • Haïat G, Padilla F, Peyrin F, Laugier P (2007) Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. J Bone Miner Res 22(5):665–674

    Article  Google Scholar 

  • Harder S, Dimaczek B, Acil Y, Terheyden H, Freitag-Wolf S, Kern M (2009) Molecular leakage at implant-abutment connection – in vitro investigation of tightness of internal conical implant-abutment connections against endotoxin penetration. Clin Oral Invest 14(4):427–432

    Article  Google Scholar 

  • Hecker DM, Eckert SE (2003) Cyclic loading of implant-supported prostheses: changes in component fit over time. J Prosthet Dent 89:346–351

    Article  Google Scholar 

  • Hecker DM, Eckert SE, Choi YG (2006) Cyclic loading of implant-supported prostheses: comparison of gaps at the prosthetic-abutment interface when cycled abutments are replaced with as-manufactured abutments. J Prosthet Dent 95:26–32

    Article  Google Scholar 

  • Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL (2001) Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol 72:1372–1383

    Article  Google Scholar 

  • Hofmann S, Hagenmuller H, Koch AM, Muller R, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L (2007) Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds. Biomaterials 28(6):1152–1162

    Article  Google Scholar 

  • Jansen VK, Conrads G, Richter EJ (1997) Microbial leakage and marginal fit of the implant-abutment interface. Int J Oral Maxillofac Implants 12:527–540

    Google Scholar 

  • Jones JR, PoologasundarampillaiG ARC, Bernard D, Lee PD (2007) Non-destructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials 28(7):1404–1413

    Article  Google Scholar 

  • Jorneus L, Jemt T, Carlsson L (1992) Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 7:353–359

    Google Scholar 

  • Kachelrieb M (2008) Micro-CT. Handb Exp Pharmacol 185(1):23–52 (Review)

    Article  Google Scholar 

  • Kamburoglu K, Barenboim SF, Aritürk T, Kaffe I (2008) Quantitative measurements obtained by micro-computed tomography and confocal laser scanning microscopy. Dentomaxillofac Radiol 37(7):385–391

    Article  Google Scholar 

  • Kerckhofs G, Schrooten J, Van Cleynenbreugel T, Lomov SV, Wevers M (2008) Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev Sci Instrum 79(1):013711

    Article  Google Scholar 

  • Komlev VS, Peyrin F, Mastrogiacomo M, Cedola A, Papadimitropoulos A, Rustichelli F, Cancedda R (2006) Kinetics of in vivo bone deposition by bone marrow stromal cells into porous calcium phosphate scaffolds: an X-ray computed microtomography study. Tissue Eng 12(12):3449–3458

    Article  Google Scholar 

  • Lin-Gibson S, Cooper JA, Landis FA, Cicerone MT (2007) Systematic investigation of porogen size and content on scaffold morphometric parameters and properties. Biomacromolecules 8(5):1511–1518 (Epub 2007 Mar 24)

    Article  Google Scholar 

  • Mangano C, Mangano F, Piattelli A, Iezzi G, Mangano A, Lacolla L (2009) Prospective clinical evaluation of 1920 Morse taper connection implants: results after 4 years of functional loading. Clin Oral Implants Res 20:254–261

    Article  Google Scholar 

  • Mangano C, Mangano F, Piattelli A, Iezzi G, Mangano A, La Colla L (2010) Prospective clinical evaluation of 307 single-tooth morse taper-connection implants: a multicenter study. Int J OralMaxillofac Implants 25:394–400

    Google Scholar 

  • Maréchal M, Luyten F, Nijs J, Postnov A, Schepers E, van Steenberghe D (2005) Histomorphometry and micro-computed tomography of bone augmentation under a titanium membrane. Clin Oral Implants Res 16(6):708–714

    Article  Google Scholar 

  • Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R (2005) Tissue engineering of bone: search for a better scaffold. OrthodCraniofac Res 8(4):277–284

    Google Scholar 

  • McGlumpy EA, Mendel DA, Holloway JA (1998) Implant screw mechanics. Dent Clin North Am 42:71–89

    Google Scholar 

  • Norton MR (1999) Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 81:159–166

    Article  Google Scholar 

  • Norton MR (2000) An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res 11:458–464

    Article  Google Scholar 

  • Oh TJ, Yoon J, Misch CE, Wang HL (2002) The causes of early implant bone loss: myth or science? J Periodontol 73:322–333

    Article  Google Scholar 

  • Papadimitropoulos A, Mastrogiacomo M, Peyrin F, Molinari E, Komlev VS, Rustichelli F, Cancedda R (2007) Kinetics of in vivo bone deposition by bone marrow stromal cells within a resorbable porous calcium phosphate scaffold: an X-ray computed microtomography study. Biotechnol Bioeng 98(1):271–281

    Article  Google Scholar 

  • Parkinson IH, Badiei A, Fazzalari NL (2008) Variation in segmentation of bone from micro-CT imaging: implications for quantitative morphometric analysis. Australas Phys Eng Sci Med 31(2):160–164

    Article  Google Scholar 

  • Patterson EA, Johns RB (1992) Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants 7:26–33

    Google Scholar 

  • Perilli E, Baruffaldi F, Visentin M, Bordini B, Traina F, Cappello A, Viceconti M (2007) MicroCT examination of human bone specimens: effects of polymethylmethacrylate embedding on structural parameters. J Microsc 225(Pt 2):192–200

    Article  MathSciNet  Google Scholar 

  • Persson LG, Leckholm U, Leonhardt A, Dahlen G, Lindhe J (1996) Bacterial colonization on internal surfaces of Branemark system implant components. Clin Oral Implants Res 7:90–95

    Article  Google Scholar 

  • Piattelli A, Scarano A, Paolantonio M, Assenza B, Leghissa GC, Di Bonaventura G (2001) Fluids and microbial penetration in the internal part of cemented-retained versus screw-retained implant-abutment connections. J Periodontol 72:1146–1150

    Article  Google Scholar 

  • Quirynen M, BollenCM EH, van Steenberghe D (1994) Microbial penetration along the implant components of the Branemark system. An in vitro study. Clin Oral Implants Res 5:239–244

    Article  Google Scholar 

  • Quirynen M, De Soete M, van Steenberghe D (2002) Infectious risks for oral implants: a review of the literature. Clin Oral Implants Res 13:1–19

    Article  Google Scholar 

  • Rack A, Rack T, Stiller M, Riesemeier H, Zabler S, Nelson K (2010) In vitro synchrotron-based radiography of micro-gap formation at the implant-abutment interface of two-piece dental implants. J Synchrotron Radiat 17:289–294

    Article  Google Scholar 

  • Ricomini Filho AP, FernandesFSdeF SFG, da Silva WJ, Del BelCury AA (2010) Preload loss and bacterial penetration on different implant-abutment connection systems. Braz Dent J 21(2):123–129

    Article  Google Scholar 

  • Rimondini L, Marin C, Brunella F, Fini M (2001) Internal contamination of a 2-component implant system after occlusal loading and provisionally luted reconstruction with or without a washer device. J Periodontol 72:1652–1657

    Article  Google Scholar 

  • Stauber M, Müller R (2008) Micro-computed tomography: a method for the non-destructive evaluation of the three-dimensional structure of biological specimens. Methods Mol Biol 455:273–292

    Article  Google Scholar 

  • Steinebrunner L, Wolfart S, Bossmann K, Kern M (2005) In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. Int J Oral Maxillofac Implants 20:875–881

    Google Scholar 

  • Tsuge T, Hagiwara Y (2009) Influence of lateral-oblique cyclic loading on abutment screw loosening of internal and external hexagon implants. Dent Mater J 28(4):373–381

    Article  Google Scholar 

  • Tsuge T, Hagiwara Y, Matsamura H (2008) Marginal fit and microgaps of implant-abutment interface with internal anti-rotation configuration. Dent Mater J 27(1):29–34

    Article  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  Google Scholar 

  • Urist MR, Sato K, Brownell AG, Malinin TI, Lietze A, Huo YK, Prolo DJ, Oklund S, Finerman GA, DeLange RJ (1983) Human bone morphogenetic protein (hBMP). Proc Soc Exp Biol Med 173(2):194–199

    Google Scholar 

  • van Lenthe HG, Hagenmuller H, Bohner M, Hollister SJ, Meinel L, Muller R (2007) Nondestructive micro-computed tomography for biological imaging and quantification of scaffold-bone interaction in vivo. Biomaterials 28:2479–2490

    Article  Google Scholar 

  • Waarsing JH, Day JS, Weinans H (2004) An improved segmentation method for in vivo microCT imaging. J Bone Miner Res 19(10):1640–1650 (Epub 2004 Jul 12)

    Article  Google Scholar 

  • Watson PA (1998) Sviluppo e produzione delle componenti protesiche:c’è bisogno di cambiamenti? Int J Prosthodont 11:513–516

    Google Scholar 

  • Weng D, Nagata MJ, Bell M, Bosco AF, de Melo LG, Richter EJ (2008) Influence of microgap location and configuration on the periimplant bone morphology in submerged implants. An experimental study in dogs. Clin Oral Implants Res 19:1141–1147

    Article  Google Scholar 

  • Weng D, Nagata MJH, Bell M, de Melo LGN, Bosco AF (2010) Influence of mcrogap location and configuration on peri-implant bone morphology in nonsubmerged implants: an experimental study in dogs. Int J Oral Maxillofac Implants 25(3):540–547

    Google Scholar 

  • Willems NM, Mulder L, Langenbach GE, Grunheid T, Zentner A, van Eijden TM (2007) Age-related changes in microarchitecture and mineralization of cancellous bone in the porcine mandibular condyle. J Struct Biol 158(3):421–427 (Epub 2007 Jan 8)

    Article  Google Scholar 

  • Yi JM, Lee JK, Um HS, Chang BS, Lee MK (2001) Marginal bony changes in relation to different vertical positions of dental implants. J Periodontal Implant Sci 40:244–248

    Article  Google Scholar 

  • Yip G, Schneider P, Roberts EW (2004) Micro-computed tomography: high resolution imaging of bone and implants in three dimensions. Semin Orthod 10:174–187

    Article  Google Scholar 

  • Zipprich H, Weigl P, Lange B, Lauer HC (2007) Erfassung, Ursachen und Folgen von Mikrobewegungen am Implantat-Abutment-Interface. Implantologie 15:31–46

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank professors L. Pacifici and L. Baggi for clinical support and professor G. Soda for generously supplying the histological experimental tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella Bedini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bedini, R., Meleo, D., Pecci, R. (2013). Microtomography and Its Application in Oral and Implant Research. In: Andreaus, U., Iacoviello, D. (eds) Biomedical Imaging and Computational Modeling in Biomechanics. Lecture Notes in Computational Vision and Biomechanics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4270-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4270-3_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4269-7

  • Online ISBN: 978-94-007-4270-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics