Glycogen Metabolism Regulation in Neurospora crassa

  • Maria C. Bertolini
  • Fernanda Z. Freitas
  • Renato M. de Paula
  • Fernanda B. Cupertino
  • Rodrigo D. Goncalves
Chapter

Abstract

Microorganisms accumulate glycogen as carbon and energy reserves to face adverse environmental conditions during growth and development. The processes of glycogen synthesis and degradation share similarities among different microorganisms. However, the regulation of the metabolism as a whole shows differences, likely due to the environmental conditions to which they individually respond. This chapter aims to present some molecular mechanisms that regulate glycogen metabolism in the fungus Neurospora crassa. The availability of its genome sequence (Galagan et al., Nature 422:859–868, 2003) and a collection of mutant strains, each carrying a deletion in a specific ORF, allowed investigation into the role of specific proteins as regulators of glycogen metabolism to begin. Here we present some biochemical and molecular mechanisms that have already been described for this fungus, and additionally, we focused on more recent findings including the molecular basis underlying the metabolism regulation, mainly at transcriptional level.

Keywords

Heat Shock Neurospora Crassa Glycogen Phosphorylase Glycogen Metabolism Glycogen Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work in the author’s laboratory was supported by grants and fellowships from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and CAPES (Coorde nação de Aperfeiçoamento de Pessoal de Nível Superior).

References

  1. Alonso MD, Lomako J, Lomako WM, Whelan WJ (1995) A new look at the biogenesis of glycogen. FASEB J 9:1126–1137PubMedGoogle Scholar
  2. Arst HN Jr, Peñalva MA (2003) pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224–231PubMedCrossRefGoogle Scholar
  3. Baskaran S, Chikwana VM, Contreras CJ, Davis KD, Wilson WA, DePaoli-Roach AA, Roach PJ, Hurley TD (2011) Multiple glycogen-binding sites in eukaryotic glycogen synthase are required for high catalytic efficiency toward glycogen. J Biol Chem 286:33999–34006PubMedCrossRefGoogle Scholar
  4. Bellosta P, Hulf T, Balla Diop S, Usseglio F, Pradel J, Aragnol D, Gallant P (2005) Myc interacts genetically with Tip48/Reptin and Tip49/Pontin to control growth and proliferation during Drosophila development. Proc Nat Acad Sci USA 102:11799–11804PubMedCrossRefGoogle Scholar
  5. Bienz M, Pelham HBR (1986) Heat shock regulatory elements function as an inducible enhancer in the Xenopus hsp70 gene and when linked to a heterologous promoter. Cell 45:753–760PubMedCrossRefGoogle Scholar
  6. Cameron S, Levin L, Zoller M, Wigler M (1988) cAMP-independent control of sporulation, glycogen metabolism and heat shock resistance in S. cerevisiae. Cell 53:555–566PubMedCrossRefGoogle Scholar
  7. Cannon JF, Pringle JR, Fiechter A, Khalil M (1994) Characterization of glycogen-deficient glc mutants of Saccharomyces cerevisiae. Genetics 136:485–503PubMedGoogle Scholar
  8. Cao Y, Mahrenholz AM, DePaoli-Roach AA, Roach PJ (1993a) Characterization of rabbit skeletal muscle glycogenin. Tyrosine 194 is essential for function. J Biol Chem 268:14687–14693PubMedGoogle Scholar
  9. Cao Y, Skurat AV, DePaoli-Roach AA, Roach PJ (1993b) Initiation of glycogen synthesis. Control of glycogenin by glycogen phosphorylase. J Biol Chem 268:21717–21721PubMedGoogle Scholar
  10. Cheng C, Mu J, Farkas I, Huang D, Goebl MG, Roach PJ (1995) Requirement of the self-glucosylating initiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 15:6632–6640PubMedGoogle Scholar
  11. Cheng C, Huang D, Roach PJ (1997) Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13:1–8PubMedCrossRefGoogle Scholar
  12. de Groot E, Bebelman JP, Mager WH, Planta RJ (2000) Very low amounts of glucose cause repression of the stress responsive gene HSP12 in Saccharomyces cerevisiae. Microbiology 146:367–375PubMedGoogle Scholar
  13. de Paula R, de Pinho CA, Terenzi HF, Bertolini MC (2002) Molecular and biochemical characterization of the Neurospora crassa glycogen synthase encoded by the gsn cDNA. Mol Genet Genomics 267:241–253PubMedCrossRefGoogle Scholar
  14. de Paula RM, Wilson WA, Terenzi HF, Roach PJ, Bertolini MC (2005a) GNN is a self-glucosylating protein involved in the initiation step of glycogen biosynthesis in Neurospora crassa. Arch Biochem Biophys 435:112–124PubMedCrossRefGoogle Scholar
  15. de Paula RM, Wilson WA, Roach PJ, Terenzi HF, Bertolini MC (2005b) Biochemical characterization of Neurospora crassa glycogenin (GNN), the self-glucosylating initiator of glycogen synthesis. FEBS Lett 10:2208–2214CrossRefGoogle Scholar
  16. de Pinho CA, Polizeli MLTM, Jorge JA, Terenzi HF (2001) Mobilization of trehalose in mutants of the cyclic AMP signaling pathway, cr-1 (CRISP-1) and mcb (microcycle conidiation), of Neurospora crassa. FEMS Microbiol Lett 199:85–89PubMedCrossRefGoogle Scholar
  17. Enjalbert B, Parrou JL, Teste MA, François J (2004) Combinatorial control by the protein kinases PKA, PHO85 and SNF1 of the transcriptional induction of the Saccharomyces cerevisiae GSY2 gene at the diauxic shift. Mol Genet Genomics 271:697–708PubMedCrossRefGoogle Scholar
  18. Estruch F, Carlson M (1993) Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13:3872–3881PubMedGoogle Scholar
  19. Farkas I, Hardy TA, DePaoli-Roach AA, Roach PJ (1990) Isolation of the GSY1 gene encoding glycogen synthase and evidence for the existence of a second gene. J Biol Chem 265:20879–20886PubMedGoogle Scholar
  20. Farkas I, Hardy TA, Goebl MG, Roach PJ (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 266:15602–15607PubMedGoogle Scholar
  21. Fletterick RJ, Madsen NB (1980) The structures and related functions of phosphorylase a. Annu Rev Biochem 49:31–61PubMedCrossRefGoogle Scholar
  22. François J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–145PubMedCrossRefGoogle Scholar
  23. Freitas FZ, Bertolini MC (2004) Genomic organization of the Neurospora crassa gsn gene: possible involvement of the STRE and HSE elements in the modulation of transcription during heat shock. Mol Genet Genomics 272:550–561PubMedCrossRefGoogle Scholar
  24. Freitas FZ, Chapeaurouge A, Perales J, Bertolini MC (2008) A systematic approach to identify STRE-binding proteins of the gsn glycogen synthase gene promoter in Neurospora crassa. Proteomics 8:2052–2061PubMedCrossRefGoogle Scholar
  25. Freitas FZ, de Paula RM, Barbosa LC, Terenzi HF, Bertolini MC (2010) cAMP signaling pathway controls glycogen metabolism in Neurospora crassa by regulating the glycogen synthase gene expression and phosphorylation. Fungal Genet Biol 47:43–52PubMedCrossRefGoogle Scholar
  26. Fu YH, Marzluf GA (1990) nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 10:1056–1065PubMedGoogle Scholar
  27. Galagan JE, Calvo SE, Borkovich KA, Selker EU et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868PubMedCrossRefGoogle Scholar
  28. Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631PubMedCrossRefGoogle Scholar
  29. Gibbons BJ, Roach PJ, Hurley TD (2002) Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J Mol Biol 319:463–477PubMedCrossRefGoogle Scholar
  30. Gonçalves RD, Cupertino FB, Freitas FZ, Luchessi AD, Bertolini MC (2011) A genome-wide screen for Neurospora crassa transcription factors regulating glycogen metabolism. Mol Cell Proteomics 10(11). doi: 10.1074/mcp.M111.007963
  31. Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 12:586–597PubMedCrossRefGoogle Scholar
  32. Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell 35:741–753PubMedCrossRefGoogle Scholar
  33. Hardy TA, Roach PJ (1993) Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J Biol Chem 268:23799–23805PubMedGoogle Scholar
  34. Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B (1998) Cyclin partners determine Pho85 protein kinase substrate specificity in vitro and in vivo: control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 18:3289–3299PubMedGoogle Scholar
  35. Jakobsen BK, Pelham HRB (1988) Constitutive binding of yeast heat shock factor to DNA in vivo. Mol Cell Biol 8:5040–5042PubMedGoogle Scholar
  36. Johnston M, Carlson M (1992) Regulation of carbon and phosphate utilization. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 193–281Google Scholar
  37. Kingston RE, Schuetz TJ, Larin Z (1987) Heat-inducible human factor that binds to a human hsp70 promoter. Mol Cell Biol 7:1530–1534PubMedGoogle Scholar
  38. Krisman CR, Barengo R (1975) A precursor of glycogen biosynthesis: alpha-1,4-glucan-protein. Eur J Biochem 52:117–123PubMedCrossRefGoogle Scholar
  39. Lamb TM, Mitchell AP (2003) The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23:677–686PubMedCrossRefGoogle Scholar
  40. Lambreghts R, Shi M, Belden WJ, Decaprio D, Park D, Henn MR, Galagan JE, Bastürkmen M, Birren BW, Sachs MS, Dunlap JC, Loros JJ (2009) A high-density single nucleotide polymorphism map for Neurospora crassa. Genetics 181:767–781PubMedCrossRefGoogle Scholar
  41. Li W, Mitchell AP (1997) Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73PubMedGoogle Scholar
  42. Lomako J, Lomako WM, Whelan WJ (1988) A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J 2:3097–3103PubMedGoogle Scholar
  43. Martinez-Pastor M, Marchler G, Schuller C, Marchler BA, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235PubMedGoogle Scholar
  44. Matias PM, Gorynia S, Donner P, Carrondo MA (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281:38918–38929PubMedCrossRefGoogle Scholar
  45. Meyer U, Monnerjahn C, Techel D, Rensing L (2000) Interaction of the Neurospora crassa heat shock factor with the heat shock element during heat shock and different developmental stages. FEMS Microbiol Lett 185:255–261PubMedCrossRefGoogle Scholar
  46. Mu J, Cheng C, Roach PJ (1996) Initiation of glycogen synthesis in yeast. Requirement of multiple tyrosine residues for function of the self-glucosylating Glg proteins in vivo. J Biol Chem 271:26554–26560PubMedCrossRefGoogle Scholar
  47. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300PubMedCrossRefGoogle Scholar
  48. Ni HT, LaPorte DC (1995) Response of a yeast glycogen synthase gene to stress. Mol Microbiol 16:1197–1205PubMedCrossRefGoogle Scholar
  49. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253PubMedCrossRefGoogle Scholar
  50. Noventa-Jordão MA, Polizeli MLTM, Bonini BM, Jorge JA, Terenzi HF (1996) Effects of temperature shifts on the activities of Neurospora crassa glycogen synthase, glycogen phosphorylase and trehalose-6-phosphate synthase. FEBS Lett 378:32–36PubMedCrossRefGoogle Scholar
  51. Nowak AJ, Alfieri C, Stirnimann CU, Rybin V, Baudin F, Ly-Hartig N, Lindner D, Müller CW (2011) Chromatin-modifying complex component Nurf55/p55 associates with histones H3 and H4 and polycomb repressive complex 2 subunit Su(z)12 through partially overlapping binding sites. J Biol Chem 286:23388–23396PubMedCrossRefGoogle Scholar
  52. Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143:1891–1900PubMedCrossRefGoogle Scholar
  53. Peñalva MA, Arst HN Jr (2002) Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446PubMedCrossRefGoogle Scholar
  54. Pitcher J, Smythe C, Campbel DG, Cohen P (1987) Identification of the 38-kDa subunit of rabbit skeletal muscle glycogen synthase as glycogenin. Eur J Biochem 169:497–502PubMedCrossRefGoogle Scholar
  55. Preiss J, Romeo T (1994) Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol 47:299–329PubMedCrossRefGoogle Scholar
  56. Roach PJ, Skurat AV, Harris RA (2001) Regulation of glycogen metabolism. In: Jefferson LS, Cherrington AD (eds) Handbook of physiology. The endocrine pancreas and regulation of metabolism, vol II. Oxford University Press, New York, pp 609–647Google Scholar
  57. Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5777–5782PubMedCrossRefGoogle Scholar
  58. Skurat AV, Dietrich AD, Zhai L, Roach PJ (2002) GNIP, a novel protein that binds and activates glycogenin, the self-glucosylating initiator of glycogen biosynthesis. J Biol Chem 277:19331–19338PubMedCrossRefGoogle Scholar
  59. Skurat AV, Dietrich AD, Roach PJ (2006) Interaction between glycogenin and glycogen synthase. Arch Biochem Biophys 456:93–97PubMedCrossRefGoogle Scholar
  60. Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 17:3556–3564PubMedCrossRefGoogle Scholar
  61. Smith TF, Gaitatzes C, Saxena K, Neer EJ (1999) The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185PubMedCrossRefGoogle Scholar
  62. Smythe C, Caudwell FB, Ferguson M, Cohen P (1988) Isolation and structural analysis of a peptide containing the novel tyrosyl-glucose linkage in glycogenin. EMBO J 7:2681–2686PubMedGoogle Scholar
  63. Smythe C, Watt P, Cohen P (1990) Further studies on the role of glycogenin in glycogen biosynthesis. Eur J Biochem 189:199–204PubMedCrossRefGoogle Scholar
  64. Sorger PK, Lewis MJ, Pelham HR (1987) Heat shock factor is regulated differently in yeast and HeLa cells. Nature 329:81–84PubMedCrossRefGoogle Scholar
  65. Téllez-Iñón MT, Torres HN (1970) Interconvertible forms of glycogen phosphorylase in Neurospora crassa. Proc Natl Acad Sci USA 66:459–463PubMedCrossRefGoogle Scholar
  66. Téllez-Iñón MT, Terenzi H, Torres HN (1969) Interconvertible forms of glycogen synthetase in Neurospora crassa. Biochim Biophys Acta 191:765–768PubMedCrossRefGoogle Scholar
  67. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Peñalva MA, Arst HN Jr (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790PubMedGoogle Scholar
  68. Torija MJ, Novo M, Lemassu A, Wilson WA, Roach PJ, François J, Parrou JL (2005) Glycogen synthesis in the absence of glycogenin in the yeast Saccharomyces cerevisiae. FEBS Lett 18:3999–4004CrossRefGoogle Scholar
  69. Unnikrishnan I, Miller ST, Meinke M, LaPorte DC (2003) Multiple positive and negative elements involved in the regulation of expression of GSY1 in Saccharomyces cerevisiae. J Biol Chem 278:26450–26457PubMedCrossRefGoogle Scholar
  70. van Peij NN, Gielkens MM, de Vries RP, Visser J, de Graaff LH (1998) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619PubMedGoogle Scholar
  71. Viskupic E, Cao Y, Zhang W, Cheng C, DePaoli-Roach AA, Roach PJ (1992) Rabbit skeletal muscle glycogenin. Molecular cloning and production of fully functional protein in Escherichia coli. J Biol Chem 267:25759–25763PubMedGoogle Scholar
  72. Vyas VK, Berkey CD, Miyao T, Carlson M (2005) Repressors Nrg1 and Nrg2 regulate a set of stress-responsive genes in Saccharomyces cerevisiae. Eukaryot Cell 4:1882–1891PubMedCrossRefGoogle Scholar
  73. Wang Z, Wilson WA, Fujino MA, Roach PJ (2001) Antagonistic control of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase and the cyclin-dependent kinase Pho85p. Mol Cell Biol 21:5742–5752PubMedCrossRefGoogle Scholar
  74. Wang TY, He F, Hu QW, Zhang Z (2011) A predicted protein-protein interaction network of the filamentous fungus Neurospora crassa. Mol Biosyst 7:2278–2285PubMedCrossRefGoogle Scholar
  75. Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985PubMedGoogle Scholar
  76. Wood MA, McMahon SB, Cole MD (2000) An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 5:321–330PubMedCrossRefGoogle Scholar
  77. Yamashiro CT, Ebbole DJ, Lee BU, Brown RE, Bourland C, Madi L, Yanofsky C (1996) Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol Cell Biol 16:6218–6228PubMedGoogle Scholar
  78. Zhai L, Dietrich A, Skurat AV, Roach PJ (2004) Structure-function analysis of GNIP, the glycogenin-interacting protein. Arch Biochem Biophys 421:236–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Maria C. Bertolini
    • 1
  • Fernanda Z. Freitas
    • 1
  • Renato M. de Paula
    • 2
  • Fernanda B. Cupertino
    • 1
  • Rodrigo D. Goncalves
    • 1
  1. 1.Departamento de Bioquímica e Tecnologia QuímicaInstituto de Química, UNESPAraraquaraBrazil
  2. 2.Nalco CompanySugar LandUSA

Personalised recommendations