Surface Triangular Mesh and Volume Tetrahedral Mesh Generations for Biomolecular Modeling

Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 3)

Abstract

Qualified, stable and efficient molecular surface/volume meshing appears to be necessitated by recent developments for realistic mathematical modeling and numerical simulation of biomolecules, especially in implicit solvent modeling. The chapter first describes a tool, TMSmesh, for surface meshing through tracing a molecular Gaussian surface. The method computes the surface points by solving a nonlinear equation directly, polygonizes by connecting surface points through a trace technique, and finally outputs a triangulated mesh. TMSmesh has a linear complexity with respect to the number of atoms and is shown to be capable of handling molecules consisting of more than one million atoms, which is usually difficult for the existing methods for surface generation used in molecular visualization and geometry analysis. Then, based on the surface mesh, a tool chain is built up to generate high-quality biomolecular volume tetrahedral mesh. The performances of these meshing tools are analyzed, and the surface/volume meshes are shown to be applicable to boundary element/finite element types of simulations of Poisson–Boltzmann electrostatics.

Keywords

Surface Mesh Molecular Surface Tetrahedral Mesh Mesh Quality Tool Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

M.X. Chen was supported in part by the China NSF (NSFC11001062) and Collegiate NSF of Jiangsu Province (No. 11KJB110010). B. Tu and B.Z. Lu was supported by the Chinese Academy of Sciences, the State Key Laboratory of Scientific/Engineering Computing, National Center for Mathematics and Interdisciplinary Sciences, and the China NSF (NSFC10971218).

References

  1. 1.
    Bates PW, Wei GW, Zhao S (2008) Minimal molecular surfaces and their applications. J Comput Chem 29(3):380–391 CrossRefGoogle Scholar
  2. 2.
    Blinn JF (1982) A generalization of algebraic surface drawing. ACM Trans Graph 1(3):235–256 CrossRefGoogle Scholar
  3. 3.
    Borouchaki H, George PL (1996) Optimal Delaunay point insertion. Int J Numer Methods Eng 39(2):3407–3437 MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Borouchaki H, Laug P, George PL (2000) Parametric surface meshing using a combined advancing-front generalized Delaunay approach. Int J Numer Methods Eng 49:233–259 MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Can T, Chen CI, Wang YF (2006) Efficient molecular surface generation using level-set methods. J Mol Graph Model 25(4):442–454 CrossRefGoogle Scholar
  6. 6.
    Chavent M, Levy B, Maigret B (2008) Metamol: high-quality visualization of molecular skin surface. J Mol Graph Model 27:209–216 CrossRefGoogle Scholar
  7. 7.
    Chen MX, Lu BZ (2011) TMSmesh: a robust method for molecular surface mesh generation using a trace technique. J Chem Theory Comput 7(1):203–212 CrossRefGoogle Scholar
  8. 8.
    Cheng HL, Shi X (2009) Quality mesh generation for molecular skin surfaces using restricted union of balls. Comput Geom 42(3):196–206 MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Connolly ML (1983) Analytical molecular surface calculation. J Appl Crystallogr 16(5):548–558 CrossRefGoogle Scholar
  10. 10.
    Connolly ML (1983) Solvent-accessible surfaces of proteins and nucleic acids. Science 221(4612):709–713 CrossRefGoogle Scholar
  11. 11.
    CUBIT: the adaptive meshing algorithm library. Sandia National Laboratories. http://cubit.sandia.gov/
  12. 12.
    de Berg M, van Kreveld M, Overmars M, Schwarzkopf O (2000) Computational geometry: algorithms and applications, 2nd edn. Springer, Berlin MATHGoogle Scholar
  13. 13.
    Duncan BS, Olson AJ (1993) Shape analysis of molecular surfaces. Biopolymers 33(2):231–238 CrossRefGoogle Scholar
  14. 14.
    Edelsbrunner H (1999) Deformable smooth surface design. Discrete Comput Geom 21(1):87–115 MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Edelsbrunner H, Mucke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13(1):43–72 MATHCrossRefGoogle Scholar
  16. 16.
    Frey PJ, Borouchaki H, George P (1998) 3D Delaunay mesh generation coupled with an advancing-front approach. Comput Methods Appl Math 157(1–2): 115–131 MathSciNetMATHGoogle Scholar
  17. 17.
    George PL, Hecht F, Saltel E TetMesh-GHS3D V3.1, the fast, reliable, high quality tetrahedral mesh generator and optimiser. White paper. http://www-roc.inria.fr/gamma/gamma/ghs3d/ghs.php
  18. 18.
    Grant JA, Gallardo MA, Pickup BT (1996) A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape. J Comput Chem 17(14):1653–1666 CrossRefGoogle Scholar
  19. 19.
    Hartmann E (1998) A marching method for the triangulation of surfaces. Vis Comput 3:95–108 CrossRefGoogle Scholar
  20. 20.
    Hilton A, Stoddart AJ, Illingworth J, Windeatt T (1996) Marching triangles: range image fusion for complex object modelling. In: IEEE international conference on image processing, vol 2, pp 381–384 Google Scholar
  21. 21.
    ISO2Mesh: a free 3D surface and volumetric mesh generator for MATLAB/Octave. http://iso2mesh.sourceforge.net/cgi-bin/index.cgi/
  22. 22.
    Jenkins MA, Traub JF (1970) A three-stage variables-shift iteration for polynomial zeros and its relation to generalized Rayleigh iteration. Numer Math 14(3):253–263 MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jin H, Kelley AC, Loakes D, Ramakrishnan V (2010) Structure of the 70s ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc Natl Acad Sci USA 19:8593–8598 CrossRefGoogle Scholar
  24. 24.
    Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of hermite data. ACM Trans Graph 21(3):339–346. CrossRefGoogle Scholar
  25. 25.
    Karkanis T, Stewart J (2001) Curvature dependent triangulation of implicit surfaces. IEEE Comput Graph Appl 2:60–69 CrossRefGoogle Scholar
  26. 26.
    Kuhn RJ, Zhang W, Rossmann MG, Sergei JC, Pletnev V, Lenches E, Jones CT, Mukhopadhyay S, Strauss EG, Chipman PR, Baker TS, Strauss JH (2002) Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 5:715–725 Google Scholar
  27. 27.
    Lohner R, Parikh P (1998) Generation of three-dimensional unstructured grids by the advancing-front method. Int J Numer Methods Fluids 8:1135–1149 CrossRefGoogle Scholar
  28. 28.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21(4):163–169 CrossRefGoogle Scholar
  29. 29.
    Lu BZ, Wang CX, Chen WZ, Wan SZ, Shi YY (2000) A stochastic dynamics simulation study associated with hydration force and friction memory effect. J Phys Chem B 104(29):6877–6883 CrossRefGoogle Scholar
  30. 30.
    Lu BZ, Zhou YC, Holst MJ, McCammon JA (2008) Recent progress in numerical methods for the Poisson–Boltzmann equation in biophysical applications. Commun Comput Phys 3(5):973–1009 MATHGoogle Scholar
  31. 31.
    Lu BZ, Cheng XL, Huang JF, McCammon JA (2010) AFMPB: an adaptive fast multipole Poisson–Boltzmann solver for calculating electrostatics in biomolecular systems. Comput Phys Commun 6:1150–1160 CrossRefGoogle Scholar
  32. 32.
    Marcum DL, Weatherill NP (1995) Unstructured grid generation using iterative point insertion and local reconnection. AIAA J 33(9):1619–1625 MATHCrossRefGoogle Scholar
  33. 33.
    McGann MR, Almond HR, Nicholls A, Grant AJ, Brown FK (2003) Gaussian docking functions. Biopolymers 68(1):76–90 CrossRefGoogle Scholar
  34. 34.
    Moller P, Hansbo P (1995) On advancing front mesh generation in three dimensions. Int J Numer Methods Eng 38:3551–3569 MathSciNetCrossRefGoogle Scholar
  35. 35.
    NetGen: an automatic 3D tetrahedral mesh generator. http://www.netgen.hr/eng
  36. 36.
    Nicholls A, Bharadwaj R, Honig B (1995) GRASP: graphical representation and analysis of surface properties. Biophys J 64:166–167 Google Scholar
  37. 37.
    Rassineux A (1998) Generation and optimization of tetrahedral meshes by advancing front technique. Int J Numer Methods Eng 41:647–651 CrossRefGoogle Scholar
  38. 38.
    Ryu J, Park R, Kim DS (2007) Molecular surfaces on proteins via beta shapes. Comput Aided Des 39:1042–1057 CrossRefGoogle Scholar
  39. 39.
    Sanner MF, Olson AJ, Spehner JC (1996) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320 CrossRefGoogle Scholar
  40. 40.
    Shephard MS, Georges MK (1991) Automatic three-dimensional mesh generation technique by the finite element octree technique. Int J Numer Methods Eng 32:709–749 MATHCrossRefGoogle Scholar
  41. 41.
    Shewchuk JR (1998) Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of the fourteenth annual symposium on computational geometry, Minneapolis, MN, pp 86–95 CrossRefGoogle Scholar
  42. 42.
    TetGen: a quality tetrahedral mesh generator and a 3D Delaunay triangulator. http://tetgen.berlios.de/
  43. 43.
    TMSmesh: a robust method for molecular surface mesh generation using a trace technique. http://lsec.cc.ac.cn/~lubz/Meshing.html
  44. 44.
    TransforMesh: a self-intersection removal package for triangular meshes. http://mvviewer.gforge.inria.fr/
  45. 45.
    Vorobjev YN, Hermans J (1997) SIMS: computation of a smooth invariant molecular surface. Biophys J 73(2):722–732 CrossRefGoogle Scholar
  46. 46.
    Wang CX, Wan SZ, Xiang ZX, Shi YY (1997) Incorporating hydration force determined by boundary element method into stochastic dynamics. J Phys Chem B 101(2):230–235 CrossRefGoogle Scholar
  47. 47.
    Wang J, Tan CH, Tan YH, Lu Q, Luo R (2008) Poisson–Boltzmann solvents in molecular dynamics simulations. Commun Comput Phys 3(5):1010–1031 Google Scholar
  48. 48.
    Weiser J, Shenkin PS, Still WC (1999) Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas. J Comput Chem 20(7):688–703 CrossRefGoogle Scholar
  49. 49.
    Yun Z, Jacobson MP, Friesner RA (2005) What role do surfaces play in GB models? A new-generation of surface-generalized born model based on a novel Gaussian surface for biomolecules. J Comput Chem 27(1):72–89 Google Scholar
  50. 50.
    Yu ZY, Holst MJ, McCammon JA (2008) High-fidelity geometric modeling for biomedical applications. Finite Elem Anal Des 44(11):715–723 MathSciNetCrossRefGoogle Scholar
  51. 51.
    Zhang D, McCammon JA (2005) The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis. PLoS Comput Biol 1(6):484–491 CrossRefGoogle Scholar
  52. 52.
    Zhang YJ, Xu GL, Bajaj R (2006) Quality meshing of implicit solvation models of biomolecular structures. Comput Aided Geom Des 23(6):510–530 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Center for Systems Biology, Department of MathematicsSoochow UniversitySuzhouChina
  2. 2.Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingChina

Personalised recommendations