Construction of Models and Meshes of Heterogeneous Material Microstructures from Image Data

  • Ottmar Klaas
  • Mark W. Beall
  • Mark S. Shephard
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 3)


This chapter presents a set of procedures that start from image data to construct a non-manifold geometric model that supports the effective generation of meshes with the types of mesh configurations and gradations needed for efficient simulations. The types of operations needed to process the image information before and during the creation of the non-manifold geometric domains are outlined, with emphasis on those methods that are most appropriate for the analysis of materials system’s behavior.


Aluminum Foam Anisotropic Mesh Mesh Modification Mesh Control Automatic Mesh Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research reported in this document was performed in connection with contract W911QX-06-C-0040 with the U.S. Army Research Laboratory and contract FA8651-11-C-0200 with the Air Force Research Laboratory (AFRL).


  1. 1.
    Adams BL, Wright SI, Kunze K (1993) Orientation imaging—the emergence of a new microscopy. Metall Trans A 24:819–831 CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Bankman I (ed) (2008) Handbook of medical image processing and analysis, 2nd edn. Elsevier, Amsterdam Google Scholar
  4. 4.
    Beall MW, Walsh J, Shephard MS (2004) A comparison of techniques for geometry access related to mesh generation. Eng Comput 20(3):210–221 CrossRefGoogle Scholar
  5. 5.
    Data set retrieved from
  6. 6.
    Flannery BP, Deckman HW, Roberge WG, D’Amico KL (1987) Three-dimensional X-ray microtomography. Science 237(4821):1439–1444 CrossRefGoogle Scholar
  7. 7.
    Garland M, Heckbert P (1997) Surface simplification using quadric error metrics. In: Proceedings of ACM SIGGRAPH, pp 209–216 Google Scholar
  8. 8.
    Gering D, Nabavi A, Kikinis R, Grimson W, Hata N, Everett P, Jolesz F, Wells W (1999) An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging. In: International conference on medical image computing and computer assisted intervention, pp 809–819 CrossRefGoogle Scholar
  9. 9.
    Gil JY, Kimmel R (2002) Efficient dilation, erosion, opening, and closing algorithms. IEEE Trans Pattern Anal Mach Intell 24(12):1606–1617 CrossRefGoogle Scholar
  10. 10.
    Groeber M, Ghosh S, Uchic MD, Dimidukc DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater 56(6):1257–1273 CrossRefGoogle Scholar
  11. 11.
    Hoppe H (1996) Progressive meshes. In: Proceedings of ACM SIGGRAPH, pp 99–108 Google Scholar
  12. 12.
    Ibanez L, Schroeder W, Ng L, Cates J (2005) The ITK software guide: the insight segmentation and registration toolkit (version 1.4). Kitware, Inc., Clifton Park Google Scholar
  13. 13.
    Ju T, Losasso F, Schaefer S, Warren J (2002) Dual contouring of hermite data. In: Proceedings of SIGGRAPH, pp 339–346 Google Scholar
  14. 14.
    Krysl P, Ortiz M (2001) Extraction of boundary representation from surface triangulations. Int J Numer Methods Eng 50:1737–1758 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kumar RS, Wang AJ, McDowell DL (2006) Effects of microstructure variability on intrinsic fatigue resistance of nickel-base superalloys—a computational mechanics approach. Int J Fract 137:173–210 zbMATHCrossRefGoogle Scholar
  16. 16.
    Li X, Shephard MS, Beall MW (2005) 3-D anisotropic mesh adaptation by mesh modifications. Comput Methods Appl Mech Eng 194(48–49):4915–4950 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lin FX, Godfrey A, Juul Jensen D, Winther G (2010) 3D EBSD characterization of deformation structures in commercial purity aluminum. Mater Charact 61:1203–1210 CrossRefGoogle Scholar
  18. 18.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of SIGGRAPH, pp 163–169 Google Scholar
  19. 19.
    Microstructural Builder web page.
  20. 20.
    Moore RH, Rohrer GS, Saigal S (2009) Reconstruction and simplification of high-quality multiple-region models from planar sections. Eng Comput 25(3):221–235 CrossRefGoogle Scholar
  21. 21.
    Owen SJ, White DR (2003) Mesh-based geometry. Int J Numer Methods Eng 58:375–395 zbMATHCrossRefGoogle Scholar
  22. 22.
    Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: Proceedings of the 1st IEEE international symposium on biomedical imaging: from nano to macro, vol 1, pp 632–635 Google Scholar
  23. 23.
    Pieper S, Lorensen B, Schroeder W, Kikinis R (2006) The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open platform for the medical image computing community. In: Proceedings of the 3rd IEEE international symposium on biomedical imaging: from nano to macro, vol 1, pp 698–701 CrossRefGoogle Scholar
  24. 24.
    Rollett AD, Lee S-B, Campman R, Rohrer GS (2007) Three-dimensional characterization of microstructure by electron back-scatter diffraction. Annu Rev Mater Res 37:627–658 CrossRefGoogle Scholar
  25. 25.
    Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008) Adaptive boundary layer meshing for viscous flow simulations. Eng Comput 24(3):267–285 CrossRefGoogle Scholar
  26. 26.
    Schaefer S, Ju T, Warren J (2007) Manifold dual contouring. IEEE Trans Vis Comput Graph 13(3):610–619 CrossRefGoogle Scholar
  27. 27.
    Shephard MS (2000) Meshing environment for geometry-based analysis. Int J Numer Methods Eng 47(1–3):169–190 zbMATHCrossRefGoogle Scholar
  28. 28.
    Shephard MS, Flaherty JE, Jansen KE, Li X, Luo X-J, Chevaugeon N, Remacle J-F, Beall MW, O’Bara RM (2005) Adaptive mesh generation for curved domains. Appl Numer Math 52(2–3):251–271 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Simmetrix, Inc.
  30. 30.
  31. 31.
    Slicer web page.
  32. 32.
    Verdu-Monedero R, Angulo J, Serra J (2011) Anisotropic morphological filters with spatially-variant structuring elements based on image-dependent gradient fields. IEEE Trans Image Process 20(1):200–212 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wan J, Kocak S, Shephard MS (2005) Automated adaptive 3-D forming simulation process. Eng Comput 21(1):47–75 CrossRefGoogle Scholar
  34. 34.
    Weiler K (1988) The radial edge structure: a topological representation for non-manifold geometric modeling. In: Geometric modeling for CAD applications, pp 3–36 Google Scholar
  35. 35.
    Zhang Y, Hughes TJR, Bajaj CL (2010) An automatic 3D mesh generation method for domains with multiple materials. Comput Methods Appl Mech Eng 199(5–8):405–415 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ottmar Klaas
    • 1
  • Mark W. Beall
    • 1
  • Mark S. Shephard
    • 2
  1. 1.Simmetrix Inc.Clifton ParkUSA
  2. 2.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations