Skip to main content

On the Use of Electrical Conductivity for the Assessment of Damage in Carbon Nanotubes Enhanced Aerospace Composites

  • Chapter
  • First Online:
Carbon Nanotube Enhanced Aerospace Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 188))

Abstract

In this chapter a review on the research of nano-enabled self-sensing structural composite materials is performed. The self-sensing concept is attained by exploiting the intrinsic electrical properties of a structural composite material. Recent research on self-sensing was stimulated by the introduction of nanotechnology in the field of composite materials. Nano-scale fillers such as carbon nanotubes (CNTs), due to their excellent electrical properties, may offer benefits of additional reinforcing phase acting at the nano-scale. The research may be divided into two distinctive categories depending on the type of fibre reinforcement. One category is the research that used electrically non-conductive glass fibre reinforced plastics (GFRP) where carbon nanotubes in various forms are incorporated into the composite to enable sensing. The other category is the research that used electrical conductive carbon fibre reinforced plastics (CFRP) where the carbon nanotubes in various forms are used to enhance the electrical sensing capabilities of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abry, J.C., Bochard, S., Chateauminois, A., Salvia, M., Giraud, G.: In situ detection of damage in CFRP laminates by electrical resistance measurements. Compos. Sci. Technol. 59(6), 925–935 (1999)

    Article  Google Scholar 

  • Abry, J.C., et al.: In-situ monitoring of damage in CFRP laminates by means of AC and DC measurements. Compos. Sci. Technol. 61, 855–864 (2001)

    Article  Google Scholar 

  • Angelidis, N., Wei, C.Y., Irving, P.E.: The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain. Compos. A 35, 1135–1147 (2004)

    Article  Google Scholar 

  • Angelidis, N., Wei, C.Y., Irving, P.E.: Response to discussion of paper: The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain. Compos. A Appl. Sci. Manuf. 37, 1495–1499 (2006)

    Article  Google Scholar 

  • Barkoula, N.M., Paipetis, A., Matikas, T., Vavouliotis, A., Karapappas, P., Kostopoulos, V.: Environmental degradation of carbon nanotube-modified composite laminates: A study of electrical resistivity. Mech. Compos. Mater. 45(1), 21–32 (2009)

    Article  Google Scholar 

  • Böger, L., Wichmann, M.H.G., Meyer, L.O., Schulte, K.: Load and health monitoring in glass fibre reinforced composites with an electrically conductive nanocomposite epoxy matrix. Compos. Sci. Technol. 68(7–8), 1886–1894 (2008)

    Article  Google Scholar 

  • Ceysson, O., Salvia, M., Vincent, L.: Damage mechanisms characterization of carbon fibre/epoxy laminates by both electrical resistance measurements and acoustic emission analysis. Scr. Mater. 34, 1273–1280 (1996)

    Article  Google Scholar 

  • Chung, D.D.L.: Self-monitoring structural materials. Mater. Sci. Eng. Rep. 22(2), 57–78 (1998)

    Article  Google Scholar 

  • Chung, D.D.L., Wang, S.: Self-sensing of damage and strain in carbon-fiber polymer-matrix structural composites by electrical resistance measurement. Polym. Polym. Compos. 11, 515–525 (2003)

    Google Scholar 

  • Chung, D.D.L., Wang, S.: Discussion on paper ‘The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain’ by N. Angelidis, C.Y. Wei and P.E. Irving, Composites Part A. 35, 1135–1147 (2004). Composites Part A: Appl. Sci. Manuf. 37, 1490–1494 (2006)

    Google Scholar 

  • Dae-Cheol Seo, Jung-Ju Lee: Damage detection of CFRP laminates using electrical resistance measurement and neural network. Composite Structures. In: Tenth International Conference on Composite Structures, vol. 47, pp. 525–530, 1–4 December 1999

    Google Scholar 

  • Fernberg, P., Nilsson, G., Joffe, R.: Piezoresistive performance of long-fiber composites with carbon nanotube doped matrix. J. Intell. Mater. Syst. Struct. 20(9), 1017–1023 (2009)

    Article  Google Scholar 

  • Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Bauhofer, W., Schulte, K.: Can carbon nanotubes be used to sense damage in composites? Ann. Chim. Sci. Mat. 29(6), 81–94 (2004)

    Article  Google Scholar 

  • Gao, S., Zhuang, R., Zhang, J., Liu, J., Mäder, E.: Class fibers with carbon nanotube networks as multifunctional sensors. Adv. Funct. Mater. 20(12), 1885–1893 (2010)

    Article  Google Scholar 

  • Indada, H., Okuhara, Y., Kumagai, H.: Health monitoring of concrete structure using self-diagnosis materials. In: Asari, F. (ed.) Sensing issues in civil structural health monitoring, pp. 239–248. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Irving, P.E., Thiagarajan, C.: Fatigue damage characterization in carbon fibre composite materials using an electrical potential technique. Smart Mater. Struct. 7, 456–466 (1998)

    Article  Google Scholar 

  • Kemp, M.: Self-sensing composites for smart damage detection using electrical properties. Proc. SPIE Int. Soc. Opt. Eng. 2361, 136–139 (1994)

    Google Scholar 

  • Khemiri, N., Angelidis, N., Irving, P.E.: Experimental and finite element study of the electrical potential technique for damage detection in CFRP laminates. Experimental and finite element. Smart Mater. Struct. 14, 147–154 (2005)

    Article  Google Scholar 

  • Kostopoulos, V., Tsotra, P., Vavouliotis, A., Karapappas, P., Tsantzalis, S., Loutas, T.: Nano-modified fiber reinforced composites: A way towards the development of new materials for space applications. In: Proceeding of 5th ESA Symposium on Micro/Nano Technologies for Space, ESTEC, Noordwijk (ESA-WPP-255) (2005)

    Google Scholar 

  • Kostopoulos, V., Tsotra, P., Karapappas, P., Vavouliotis, A., Tsantzalis, S., Friedrich, K.: Enhancement of the mechanical performance of carbon fiber reinforced epoxy resin composites by the introduction of carbon nano-fibers (CNF). Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p. 3273 (2006)

    Google Scholar 

  • Kostopoulos, V., Tsotra, P., Vavouliotis, A., Karappapas, P., Tsantzalis, S., Loutas, T.: Damage detection during fatigue loading of CNF doped CFRPs via resistance measurements and AE. Diffus. Defect Data B. Solid State Phenom. 121–123(Part 2), 1399–1402 (2007a)

    Google Scholar 

  • Kostopoulos, V., Tsotra, P., Vavouliotis, A., Karapappas, P., Fiamegou, E. Tsantzalis, S.:, Improved sensing properties of epoxy resin polymers and carbon fiber reinforced epoxy resin composites by the introduction of multiwall carbon nanotubes (MWCNT). Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, p. 4727 (2007b)

    Google Scholar 

  • Kostopoulos, V., Vavouliotis, A., Karapappas, P. Carbon nanotube epoxy modified CFRPs: Towards improved mechanical and sensing for multifunctional aerostructures. In: Proceedings of SPIE – The International Society for Optical Engineering, 6929, art. no. 69292M (2008)

    Google Scholar 

  • Kostopoulos, V., Vavouliotis, A., Karapappas, P., Tsotra, P., Paipetis, A.: Damage monitoring of carbon fiber reinforced laminates using resistance measurements. Improving sensitivity using carbon nanotube doped epoxy matrix system. J. Intell. Mater. Syst. Struct. 20(9), 1025–1034 (2009a)

    Article  Google Scholar 

  • Kostopoulos, V., Vavouliotis, A., Karapappas, P., Tsotra, P., Paipetis, A.: Damage monitoring of carbon fiber reinforced laminates using resistance measurements. Improving sensitivity using carbon nanotube doped epoxy matrix system. J. Intell. Mater. Syst. Struct. 20(9), 1025–1034 (2009b)

    Article  Google Scholar 

  • Kupke, M., Schulte, K., Schuler, R.: Non-destructive testing of FRP by d.c. and a.c. electrical methods. Compos. Sci. Technol. 61(6), 837–847 (2001)

    Article  Google Scholar 

  • Li, C., Thostenson, E.T., Chou, T.-W.: Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 68(6), 0266–3538 (2008). doi:10.1016/j.compscitech.2008.01.006. ISSN 0266-3538

    Google Scholar 

  • Lim, A.S., An, Q., Chou, T., Thostenson, E.T.: Mechanical and electrical response of carbon nanotube-based fabric composites to Hopkinson bar loading. Compos. Sci. Technol. 71(5), 616–621 (2011)

    Article  Google Scholar 

  • Loyola, B.R., La Saponara, V., Loh, K.J.: Characterizing the self-sensing performance of carbon nanotube-enhanced fiber-reinforced polymers. In: Proceeding of SPIE, vol. 7649, 76490F, doi:10.1117/12.848712 (2010a)

  • Loyola, B.R., La Saponara, V., Loh, K.J.: In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J. Mater. Sci. 45(24), 6786–6798 (2010b)

    Article  Google Scholar 

  • Nanni, F., Auricchio, F., Sarchi, F., Forte, G., Gusmano, G.: Self-sensing CF-FRP rods as mechanical reinforcement and sensors of concrete beams. Smart Mater. Struct. 15, 182–186 (2006)

    Article  Google Scholar 

  • Nanni, F., Ruscito, G., Nad, L., Gusmano, G.: Self-sensing nanocomposite CNP-GFRP rods as reinforcement and sensors of concrete beams. J. Intell. Mater. Syst. Struct. 20(13), 1615–1623 (2009)

    Article  Google Scholar 

  • Nanni, F., Ruscito, G., Puglia, D., Terenzi, A., Kenny, J.M., Gusmano, G.: Effect of carbon black nanoparticle intrinsic properties on the self-monitoring performance of glass fibre reinforced composite rods. Compos. Sci. Technol. 71(1), 1–8 (2011)

    Article  Google Scholar 

  • Nofar, M., Hoa, S.V., Pugh, M.D.: Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks. Compos. Sci. Technol. 69(10), 1599–1606 (2009)

    Article  Google Scholar 

  • Okuhara, Y., Shin, S.G., Matsubara, H., Yanagida, H., Takeda, T.: Self-diagnosis function of FRP containing electrically conductive phase. In: Proceeding of SPIE’s Sensory Phenomena and Measurements Instrumentation for Smart Structures and Materials, San Diego, CA, USA, pp. 191–198 (2000)

    Google Scholar 

  • Okuhara, Y., Shin, S.G., Matsubara, H., Yanagida, H., Takeda, T.: Development of conductive FRP containing carbon phase for self-diagnosis structures. In: Proceeding of SPIE’s Smart Structures and Materials. New Port Beach, CA, USA, pp. 314–322 (2001)

    Google Scholar 

  • Park, J.B., Lee, S., Kim, K.W., Yoon, D.J.: Interfacial Aspect of Electrodeposited Conductive Fibers/Epoxy Composites Using Electro-Micromechanical Technique and Nondestructive Evaluation. J. Colloid Interface Sci. 237(1), 80–90 (2001)

    Article  Google Scholar 

  • Park, J.B., Okabe, T., Takeda, N., Curtin, W.A.: Electromechanical modeling of unidirectional CFRP composites under tensile loading condition. Compos. A. Appl. Sci. Manuf. 33, 267–275 (2002)

    Article  Google Scholar 

  • Park, J.B., Okabe, T., Takeda, N.: New concept for modeling the electromechanical behavior of unidirectional carbon-fibre-reinforced plastic under tensile loading. Smart Mater. Struct. 12, 105–114 (2003)

    Article  Google Scholar 

  • Prasse, T., Michel, F., Mook, G., Schulte, K., Bauhofer, W.: A comparative investigation of electrical resistance and acoustic emission during cyclic loading of CFRP laminates. Compos. Sci. Technol. 61(6), 831–835 (2001)

    Article  Google Scholar 

  • Rausch, J., Mäder, E.: Health monitoring in continuous glass fiber reinforced thermoplastics: Manufacturing and application of interphase sensors based on carbon nanotubes. Compos. Sci. Technol. 70(11), 1589–1596 (2010a)

    Article  Google Scholar 

  • Rausch, J., Mäder, E.: Health monitoring in continuous glass fiber reinforced thermoplastics: Tailored sensitivity and cyclic loading of CNT-based interphase sensors. Compos. Sci. Technol. 70(13), 2023–2030 (2010b)

    Article  Google Scholar 

  • Schulte, K., Baron, Ch: Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos. Sci. Technol. 36, 63–76 (1989)

    Article  Google Scholar 

  • Shin, S.: Evolution of the health of concrete structures by electrically conductive GFRP (glass fiber reinforced plastic) composites. Met. Mater. Int. 8(1), 63–68 (2002)

    Article  Google Scholar 

  • Sirong, Z., Chung, D.D.L.: Analytical model of piezoresistivity for strain sensing in carbon fiber polymer–matrix structural composite under flexure. Carbon 45, 1606–1613 (2007)

    Article  Google Scholar 

  • Sotiriadis, G., Tsotra, P., Paipetis, A., Kostopoulos, V.: Stiffness degradation monitoring of carbon nanotube doped Glass/Vinylester composites via resistance measurements. J. Nanostruct. Polym. Nanocompos. 3(3), 90–95 (2007)

    Google Scholar 

  • Sureeyatanapas, P., Young, R.J.: SWNT composite coatings as a strain sensor on glass fibres in model epoxy composites. Compos. Sci. Technol. 69(10), 1547–1552 (2009)

    Article  Google Scholar 

  • Sureeyatanapas, P., Hejda, M., Eichhorn, S.J., Young, R.J.: Comparing single-walled carbon nanotubes and samarium oxide as strain sensors for model glass-fibre/epoxy composites. Compos. Sci. Technol. 70(1), 88–93 (2010)

    Article  Google Scholar 

  • Thostenson, E., Chou, T.-W.: Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing. Adv. Mater. 18, 2837–2841 (2006). doi:10.1002/adma.200600977

    Article  Google Scholar 

  • Thostenson, E.T., Chou, T.: Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology 19(21), 215713 (2008)

    Article  Google Scholar 

  • Todoroki, A., Yoshida, J.: Electrical resistance change of unidirectional CFRP due to applied load. JSME. Int. J. Ser. A. 47(Part 3), 357–364 (2004)

    Article  Google Scholar 

  • Todoroki, A., Yoshida, J.: Apparent negative piezoresistivity of single-ply CFRP due to poor electrical contact of four-probe method. Key Eng. Mater. 297–300 I, 610–615 (2005)

    Google Scholar 

  • Todoroki, A., Tanaka, M., Shimanura, Y.: Measurement of orthotropic electric conductance of cfrp laminates and analysis of the effect on delamination monitoring with an electric resistance change method. Compos. Sci. Technol. 62, 619–628 (2002)

    Google Scholar 

  • Vavouliotis, A., Tsotra, P., Kostopoulos, V., Karapappas, P., Miaris, A. Nikolaou, N.: MWCNT-modified fiber reinforced composites with nano-sensing capabilities: A way towards the development of the new functional materials for space applications. In: AIAA 57th International Astronautical Congress, IAC 2006, p. 5523 (2006)

    Google Scholar 

  • Vavouliotis, A., Karapappas, P., Loutas, T., Voyatzi, T., Paipetis, A., Kostopoulos, V.: Multistage fatigue life monitoring on carbon fibre reinforced polymers enhanced with multiwall carbon nanotubes. Plast. Rubber Compos. 38(2–4), 124–130 (2009)

    Article  Google Scholar 

  • Vavouliotis, A., Paipetis, A., Kostopoulos, V.: On the fatigue life prediction of CFRP laminates using the electrical resistance change method. Compos. Sci. Technol. 71(5), 630–642 (2011)

    Article  Google Scholar 

  • Wang, X., Chung, D.D.L.: Real-time monitoring of fatigue damage and dynamic strain in carbon fiber polymer-matrix composite by electrical resistance measurement. Smart Mater. Struct. 6, 504–508 (1997)

    Article  Google Scholar 

  • Wang, X., Chung, D.D.L.: Self-monitoring of fatigue damage and dynamic strain in carbon fiber polymer-matrix composite. Compos. B. Eng 29, 63–73 (1998a)

    Article  Google Scholar 

  • Wang, X., Chung, D.D.L.: Residual stress in carbon fiber embedded in epoxy, studied by simultaneous measurement of applied stress and electrical resistance. Compos. Interfaces 5(3), 277–281 (1998b)

    Article  Google Scholar 

  • Wang, S., Chung, D.D.L.: Piezoresistance in continuous carbon fiber polymer-matrix composite. Polym. Compos. 21, 13–19 (2000)

    Article  Google Scholar 

  • Wang, S., Shui, X., Fu, X., Chung, D.D.L.: Early fatigue damage in carbon-fibre composites observed by electrical resistance measurement. J. Mater. Sci. 33, 3875–3884 (1998)

    Article  Google Scholar 

  • Wang, X., Wang, S., Chung, D.D.L.: Sensing damage in carbon fiber and its polymer-matrix and carbon-matrix composites by electrical resistance measurement. J. Mater. Sci. 34, 2703–2713 (1999)

    Article  Google Scholar 

  • Weber, I., Schwartz, P.: Monitoring bending fatigue in carbon-fibre/epoxy composite strands: a comparison between mechanical and resistance techniques. Compos. Sci. Technol. 61(6), 849–853 (2001)

    Article  Google Scholar 

  • Xia, Z.H., Curtin, W.A.: Modeling of mechanical damage detection in CFRPs via electrical resistance. Compos. Sci. Technol. 67(7–8), 1518–1529 (2007)

    Article  Google Scholar 

  • Xia, Z.H., Curtin, W.A.: Damage detection via electrical resistance in CFRP composites under cyclic loading. Compos. Sci. Technol. 68(12), 2526–2534 (2008)

    Article  Google Scholar 

  • Yesil, S., Winkelmann, C., Bayram, G., La Saponara, V.: Surfactant-modified multiscale composites for improved tensile fatigue and impact damage sensing. Mater. Sci. Eng., A 527(27–28), 7340–7352 (2010)

    Google Scholar 

  • Zhang, W., Sakalkar, V., Koratkar, N.: In situ health monitoring and repair in composites using carbon nanotube additives. Appl. Phys. Lett. 91(13), 133102 (2007)

    Article  Google Scholar 

  • Zhang, J., Zhuang, R., Liu, J., Mäder, E., Heinrich, G., Gao, S.: Functional interphases with multiwalled carbon nanotubes in glass fibre/epoxy composites. Carbon 48(8), 2273–2281 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Kostopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vavouliotis, A.I., Kostopoulos, V. (2013). On the Use of Electrical Conductivity for the Assessment of Damage in Carbon Nanotubes Enhanced Aerospace Composites. In: Paipetis, A., Kostopoulos, V. (eds) Carbon Nanotube Enhanced Aerospace Composite Materials. Solid Mechanics and Its Applications, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4246-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4246-8_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4245-1

  • Online ISBN: 978-94-007-4246-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics