Skip to main content

Midkine and Chemoresistance in Cancers

  • Chapter
  • First Online:
Book cover Midkine: From Embryogenesis to Pathogenesis and Therapy

Abstract

A major obstacle in chemotherapy is treatment failure due to anticancer drug resistance. Resistance develops from host factors and genetic or epigenetic changes in cancer cells. Midkine, a heparin-binding growth factor, is overexpressed in many kinds of tumors, whereas in normal adult tissue, its expression is usually low or undetectable. Recent reports show evidence that midkine is involved with the mechanism underlying chemoresistance to various cancer cells. Here, we summarize some reports dealing with the relationship between chemoresistance and midkine in cancers, and we also discuss the feasibility of midkine as a molecular target for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roumiantsev S, Shah NP, Gorre ME et al (2002) Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci USA 99:10700–10705

    Article  PubMed  CAS  Google Scholar 

  2. Shannon KM (2002) Resistance in the land of molecular cancer therapeutics. Cancer Cell 2:99–102

    Article  PubMed  CAS  Google Scholar 

  3. Gottesman MM, Hrycyna CA, Schoenlein PV et al (1995) Genetic analysis of the multidrug transporter. Annu Rev Genet 29:607–649

    Article  PubMed  CAS  Google Scholar 

  4. Gorre ME, Mohammed M, Ellwood K et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880

    Article  PubMed  CAS  Google Scholar 

  5. Schmitt E, Sane AT, Steyaert A et al (1997) The Bcl-xL and Bax-alpha control points: modulation of apoptosis induced by cancer chemotherapy and relation to TPCK-sensitive protease and caspase activation. Biochem Cell Biol 75:301–314

    PubMed  CAS  Google Scholar 

  6. Fulda S, Debatin KM (2003) Apoptosis pathways in neuroblastoma therapy. Cancer Lett 197:131–135

    Article  PubMed  CAS  Google Scholar 

  7. Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966

    Article  PubMed  CAS  Google Scholar 

  8. Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  PubMed  CAS  Google Scholar 

  9. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354

    Article  PubMed  CAS  Google Scholar 

  10. Cavallaro U, Christofori G (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4:118–132

    Article  PubMed  CAS  Google Scholar 

  11. di Magliano MP (2003) Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer 3:903–911

    Article  Google Scholar 

  12. Dizdarevic S, Peters AM (2011) Imaging of multidrug resistance in cancer. Cancer Imaging 11:1–8

    Article  PubMed  CAS  Google Scholar 

  13. Colabufo NA, Contino M, Niso M et al (2011) EGFR tyrosine kinase inhibitors and multidrug resistance: perspectives. Front Biosci 16:1811–1823

    Article  PubMed  CAS  Google Scholar 

  14. Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14:35–48

    Article  PubMed  Google Scholar 

  15. Rohlff C, Glazer RI (1995) Regulation of multidrug resistance through the cAMP and EGF signalling pathways. Cell Signal 7:431–443

    Article  PubMed  CAS  Google Scholar 

  16. Muramatsu T (2002) MK and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  17. Muramatsu T (2010) MK, a heparin-binding cytokine with multiple roles in development, repair and diseases. Proc Jpn Acad Ser B Phys Biol Sci 86:410–425

    Article  PubMed  CAS  Google Scholar 

  18. Kang HC, Kim IJ, Park JH et al (2004) Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays. Clin Cancer Res 10:272–284

    Article  PubMed  CAS  Google Scholar 

  19. Mirkin BL, Clark S, Zheng X et al (2005) Identification of MK as a mediator for intercellular transfer of drug resistance. Oncogene 24:4965–4974

    Article  PubMed  CAS  Google Scholar 

  20. Mashima T, Sato S, Sugimoto Y et al (2009) Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellularacidosis conditions. Oncogene 28:9–19

    Article  PubMed  CAS  Google Scholar 

  21. Qi M, Ikematsu S, Ichihara-Tanaka K et al (2000) MK rescues Wilms’ tumor cells from cisplatin-induced apoptosis: regulation of Bcl-2 expression by MK. J Biochem 127:269–277

    Article  PubMed  CAS  Google Scholar 

  22. Suganuma K, Kubota T, Saikawa Y et al (2003) Possible chemoresistance-related genes for gastric cancer detected by cDNA microarray. Cancer Sci 94:355–359

    Article  PubMed  CAS  Google Scholar 

  23. Ratovitski EA, Kotzbauer PT, Milbrandt J et al (1998) Midkine induces tumor cell proliferation and binds to a high affinity signaling receptor associated with JAK tyrosine kinases. J Biol Chem 273:3654–3660

    Article  PubMed  CAS  Google Scholar 

  24. Owada K, Sanjo N, Kobayashi T et al (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73:2084–2092

    PubMed  CAS  Google Scholar 

  25. Luschen S, Ussat S, Scherer G et al (2000) Sensitization to death receptor cytotoxicity by inhibition of fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J Biol Chem 275:24670–24678

    Article  PubMed  CAS  Google Scholar 

  26. Chang BD, Swift ME, Shen M et al (2002) Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proc Natl Acad Sci USA 99:389–394

    Article  PubMed  CAS  Google Scholar 

  27. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  28. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    PubMed  CAS  Google Scholar 

  29. Harris AL (2002) Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  30. Rofstad EK, Mathiesen B, Kindem K et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66:6699–6707

    Article  PubMed  CAS  Google Scholar 

  31. Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91

    Article  PubMed  CAS  Google Scholar 

  32. Coleman RA, Lewin TM, Van Horn CG et al (2002) Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr 132:2123–2126

    PubMed  CAS  Google Scholar 

  33. Yamashita Y, Kumabe T, Cho YY et al (2000) Fatty acid induced glioma cell growth is mediated by the acyl-CoA synthetase 5 gene located on chromosome 10q25.1-q25.2, a region frequently deleted in malignant gliomas. Oncogene 19:5919–5925

    Article  PubMed  CAS  Google Scholar 

  34. Mashima T, Oh-hara T, Sato S et al (2005) p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target. J Natl Cancer Inst 97:765–777

    Article  PubMed  CAS  Google Scholar 

  35. Mashima T, Tsuruo T (2005) Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat 8:339–343

    Article  PubMed  CAS  Google Scholar 

  36. Lewin TM, Kim JH, Granger DA et al (2001) Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J Biol Chem 276:24674–24679

    Article  PubMed  CAS  Google Scholar 

  37. Schoonjans K, Staels B, Auwerx J (1996) Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 37:907–925

    PubMed  CAS  Google Scholar 

  38. Cao Y, Pearman AT, Zimmerman GA et al (2000) Intracellular unesterified arachidonic acid signals apoptosis. Proc Natl Acad Sci USA 97:11280–11285

    Article  PubMed  CAS  Google Scholar 

  39. Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580:998–1009

    Article  PubMed  CAS  Google Scholar 

  40. Kim R, Tanabe K, Uchida Y et al (2002) Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol 50:343–352

    Article  PubMed  CAS  Google Scholar 

  41. Tsuruo T, Naito M, Tomida A et al (2003) Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94:15–21

    Article  PubMed  CAS  Google Scholar 

  42. Hu R, Yan Y, Li Q et al (2010) Increased drug efflux along with midkine gene high expression in childhood B-lineage acute lymphoblastic leukemia cells. Int J Hematol 92:105–110

    Article  PubMed  CAS  Google Scholar 

  43. Takei Y, Kadomatsu K, Goto T et al (2006) Combinational antitumor effect of siRNA against midkine and paclitaxel on growth of human prostate cancer xenografts. Cancer 107:864–873

    Article  PubMed  CAS  Google Scholar 

  44. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  45. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  46. Ryther RCC, Flynt AS, Phillips JA III et al (2005) siRNA therapeutics: big potential from small RNAs. Gene Ther 12:5–11

    Article  PubMed  CAS  Google Scholar 

  47. Ochiya T, Takahama Y, Nagahara S et al (1999) New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat Med 5:707–710

    Article  PubMed  CAS  Google Scholar 

  48. Takei Y, Kadomatsu K (2005) In vivo delivery technique of nucleic acid compounds using atelocollagen: its use in cancer therapeutics targeted at the heparin-binding growth factor midkine. Gene Ther Mol Biol 9:257–264

    Google Scholar 

  49. Takei Y, Kadomatsu K, Yuzawa Y et al (2004) A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64:3365–3370

    Article  PubMed  CAS  Google Scholar 

  50. Schiff PB, Horwitz SB (1981) Taxol assembles tubulin in the absence of exogenous guanosine 50-triphosphate or microtubule-associated proteins. Biochemistry 20:3247–3252

    Article  PubMed  CAS  Google Scholar 

  51. Belotti D, Vergani V, Drudis T et al (1996) The microtubule affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849

    PubMed  CAS  Google Scholar 

  52. Weidner N, Carroll PR, Flax J et al (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401–409

    PubMed  CAS  Google Scholar 

  53. Polin L, Valeriote F, White K et al (1997) Treatment of human prostate tumors PC-3 and TSU-PR1 with standard and investigational agents in SCID mice. Invest New Drugs 15:99–108

    Article  PubMed  CAS  Google Scholar 

  54. Tsutsui J, Kadomatsu K, Matsubara S et al (1993) A new family of heparin-binding growth differentiation factors: increased midkine expression in Wilms’ tumor and other human carcinomas. Cancer Res 53:1281–1285

    PubMed  CAS  Google Scholar 

  55. Konishi N, Nakamura M, Nakaoka S et al (1999) Immunohistochemical analysis of midkine expression in human prostate carcinoma. Oncology 57:253–257

    Article  PubMed  CAS  Google Scholar 

  56. Takei Y, Kadomatsu K, Matsuo S et al (2001) Antisense oligodeoxynucleotide targeted to midkine, a heparin-binding growth factor, suppressed tumorigenicity of mouse rectal carcinoma cells. Cancer Res 61:8486–8491

    PubMed  CAS  Google Scholar 

  57. Altekruse SF, McGlynn KA, Reichman ME (2009) Hepatocellular carcinoma incidence, mortality and survival trends in the United States from 1975 to 2005. J Clin Oncol 27:1485–1491

    Article  PubMed  Google Scholar 

  58. Aridome K, Tsutsui J, Takao S et al (1995) Increased midkine gene expression in human gastrointestinal cancers. Jpn J Cancer Res 86:655–661

    Article  PubMed  CAS  Google Scholar 

  59. Koide N, Hada H, Shinji T et al (1999) Expression of the midkine gene in human hepatocellular carcinomas. Hepatogastroenterology 46:3189–3196

    PubMed  CAS  Google Scholar 

  60. Dai LC, Wang X, Yao X et al (2007) Enhanced therapeutic effects of combined chemotherapeutic drugs and midkine antisense oligonucleotides for hepatocellular carcinoma. World J Gastroenterol 13:1989–1994

    PubMed  CAS  Google Scholar 

  61. Dai LC, Wang X, Yao X et al (2007) Antisense oligonucleotide targeting midkine suppresses in vivo angiogenesis. World J Gastroenterol 13:1208–1213

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Takei .

Editor information

Editors and Affiliations

Additional information

Funding: Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (17016030) and from the Japan Society for the Promotion of Science (17790185, 19590273, and 21590305).

Conflict of interest: No potential conflicts of interest were disclosed.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Takei, Y., Kadomatsu, K. (2012). Midkine and Chemoresistance in Cancers. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_20

Download citation

Publish with us

Policies and ethics