Skip to main content

Midkine, a Factor Promoting Cytoplasmic Maturation of Oocytes

  • Chapter
  • First Online:
Midkine: From Embryogenesis to Pathogenesis and Therapy

Abstract

In most mammals, oocyte maturation is the final process of oogenesis, from the prophase of the first meiosis to the metaphase of the second meiosis, during which the oocyte acquires fertilizable competence as well as post-fertilization development competence. Notably, cytoplasmic maturation is important for oocytes to acquire fertilizable and post-fertilization developmental competence during maturation, and mainly regulated by environmental factors in ovarian antral follicles including follicular fluids and intercellular communication between oocytes and follicle cells such as granulosa and cumulus cells.

Midkine (MK) is included in follicular fluids at high concentrations, and its receptor complexes are present in antral follicles. In the in vitro maturation (IVM), cytoplasmic maturation of bovine cumulus-enclosed oocytes (CEOs) is promoted by adding MK to IVM medium. The promoting effect is not exerted in oocytes freed from CEOs (denuded oocytes, DOs), but is exerted in DOs co-cultured with cumulus cells or cultured with conditioned medium of granulosa cells prepared in the presence of MK. Furthermore, MK has anti-apoptotic effects on cumulus cells. Taken together, it is suggested that MK acts on the cumulus cells surrounding an oocyte to help them survive and secrete a cytoplasmic maturation-promoting factor(s), which acts directly on oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eppig JJ, Schultz RM, O’Brien M et al (1994) Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev Biol 164:1–9

    Article  PubMed  CAS  Google Scholar 

  2. Kikuchi K, Nagai T, Ding J et al (1999) Cytoplasmic maturation for activation of pig follicular oocytes cultured and arrested at metaphase I. J Reprod Fertil 116:143–156

    Article  PubMed  CAS  Google Scholar 

  3. Yamada M, Isaji Y (2011) Structural and functional changes linked to, and factors promoting, cytoplasmic maturation in mammalian oocytes. Reprod Med Biol 10:69–79

    Article  CAS  Google Scholar 

  4. Kadomatsu K, Huang RP, Suganuma T et al (1990) A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed in spatially and temporally controlled manner during mouse embryogenesis. J Cell Biol 110:607–616

    Article  PubMed  CAS  Google Scholar 

  5. Kadomatsu K, Tomomura M, Muramatsu T (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151:1312–1318

    Article  PubMed  CAS  Google Scholar 

  6. Tomomura M, Kadomatsu K, Matsubara S et al (1990) A retinoic acid-responsive gene, MK, found in the teratocarcinoma system. Heterogeneity of the transcript and the nature of the translation product. J Biol Chem 265:10765–10770

    PubMed  CAS  Google Scholar 

  7. Fabri L, Maruta H, Muramatsu H et al (1993) Structural characterisation of native and recombinant forms of the neurotrophic cytokine MK. J Chromatogr 646:213–225

    Article  PubMed  CAS  Google Scholar 

  8. Muramatsu H, Shirahama H, Yonezawa S et al (1993) Midkine, a retinoic acid-inducible growth/differentiation factor: immunochemical evidence for the function and distribution. Dev Biol 159:392–402

    Article  PubMed  CAS  Google Scholar 

  9. Hirota Y, Osuga Y, Nose E et al (2007) The presence of midkine and its possible implication in human ovarian follicles. Am J Reprod Immunol 58:367–373

    Article  PubMed  CAS  Google Scholar 

  10. Ohyama Y, Miyamoto K, Minamino N et al (1994) Isolation and identification of midkine and pleiotrophin in bovine follicular fluid. Mol Cell Endocrinol 105:203–208

    Article  PubMed  CAS  Google Scholar 

  11. Karino S, Minegishi T, Ohyama Y et al (1995) Regulation and localization of midkine in rat ovary. FEBS Lett 362:147–150

    Article  PubMed  CAS  Google Scholar 

  12. Minegishi T, Karino S, Tano M et al (1996) Regulation of midkine messenger ribonucleic acid levels in cultured rat granulosa cells. Biochem Biophys Res Commun 229:799–805

    Article  PubMed  CAS  Google Scholar 

  13. Gómez E, Royo LJ, Duque P et al (2003) 9-cis-retinoic acid during in vitro maturation improves development of the bovine oocyte and increases midkine but not IGF-I expression in cumulus-granulosa cells. Mol Reprod Dev 66:247–255

    Article  PubMed  Google Scholar 

  14. Maeda N, Ichihara-Tanaka K, Kimura T et al (1999) A receptor-like protein-tyrosine phosphatase PTPzeta/RPTPbeta binds a heparin-binding growth factor midkine. Involvement of arginine 78 of midkine in the high affinity binding to PTPzeta. J Biol Chem 274:12474–12479

    Article  PubMed  CAS  Google Scholar 

  15. Muramatsu H, Zou K, Sakaguchi N et al (2000) LDL receptor-related protein as a component of the midkine receptor. Biochem Biophys Res Commun 270:936–941

    Article  PubMed  CAS  Google Scholar 

  16. Kojima T, Katsumi A, Yamazaki T et al (1996) Human ryudocan from endothelium-like cells binds basic fibroblast growth factor, midkine, and tissue factor pathway inhibitor. J Biol Chem 271:5914–5920

    Article  PubMed  CAS  Google Scholar 

  17. Mitsiadis TA, Salmivirta M, Muramatsu T et al (1995) Expression of the heparin-binding cytokines, midkine (MK) and HB-GAM (pleiotrophin) is associated with epithelial-mesenchymal interactions during fetal development and organogenesis. Development 121:37–51

    PubMed  CAS  Google Scholar 

  18. Nakanishi T, Kadomatsu K, Okamoto T et al (1997) Expression of syndecan-1 and -3 during embryogenesis of the central nervous system in relation to binding with midkine. J Biochem 121:197–205

    PubMed  CAS  Google Scholar 

  19. Muramatsu T (1993) Midkine (MK), the product of a retinoic acid responsive gene, and pleiotrophin constitute a new protein family regulating growth and differentiation. Int J Dev Biol 37:183–188

    PubMed  CAS  Google Scholar 

  20. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  21. Muramatsu H, Zou P, Kurosawa N et al (2006) Female infertility in mice deficient in midkine and pleiotrophin, which form a distinct family of growth factors. Genes Cells 11:1405–1417

    Article  PubMed  CAS  Google Scholar 

  22. Leibfried-Rutledge ML, Critser ES, Eyestone WH et al (1987) Development potential of bovine oocytes matured in vitro or in vivo. Biol Reprod 36:376–383

    Article  PubMed  CAS  Google Scholar 

  23. van de Leemput EE, Vos PL, Zeinstra EC et al (1999) Improved in vitro embryo development using in vivo matured oocytes from heifers superovulated with a controlled preovulatory LH surge. Theriogenology 52:335–349

    Article  PubMed  Google Scholar 

  24. Eppig JJ (1996) Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev 8:485–489

    Article  PubMed  CAS  Google Scholar 

  25. Artini PG, Battaglia C, D’Ambrogio G et al (1994) Relationship between human oocyte maturity, fertilization and follicular fluid growth factors. Hum Reprod 9:902–906

    PubMed  CAS  Google Scholar 

  26. Driancourt MA, Thuel B (1998) Control of oocyte growth and maturation by follicular cells and molecules present in follicular fluid. A review. Reprod Nutr Dev 38:345–362

    Article  PubMed  CAS  Google Scholar 

  27. Ali A, Coenen K, Bousquet D et al (2004) Origin of bovine follicular fluid and its effect during in vitro maturation on the developmental competence of bovine oocytes. Theriogenology 62:1596–1606

    Article  PubMed  Google Scholar 

  28. Carolan C, Lonergan P, Monget P et al (1996) Effect of follicle size and quality on the ability of follicular fluid to support cytoplasmic maturation of bovine oocytes. Mol Reprod Dev 43:477–483

    Article  PubMed  CAS  Google Scholar 

  29. Romero-Arredondo A, Seidel GE Jr (1996) Effects of follicular fluid during in vitro maturation of bovine oocytes on in vitro fertilization and early embryonic development. Biol Reprod 55:1012–1016

    Article  PubMed  CAS  Google Scholar 

  30. Ikeda S, Azuma T, Hashimoto S et al (1999) In vitro maturation of bovine oocytes with fractions of bovine follicular fluid separated by heparin affinity chromatography. J Reprod Dev 45:397–404

    Article  Google Scholar 

  31. Seli E, Zeyneloglu HB, Senturk LM et al (1998) Basic fibroblast growth factor: peritoneal and follicular fluid levels and its effect on early embryonic development. Fertil Steril 69:1145–1148

    Article  PubMed  CAS  Google Scholar 

  32. Kobayashi K, Yamashita S, Hoshi H (1994) Influence of epidermal growth factor and transforming growth factor-alpha on in vitro maturation of cumulus cell-enclosed bovine oocytes in a defined medium. J Reprod Fertil 100:439–446

    Article  PubMed  CAS  Google Scholar 

  33. Ikeda S, Nishikimi A, Ichihara-Tanaka K et al (2000) cDNA cloning of bovine midkine and production of the recombinant protein, which affects in vitro maturation of bovine oocytes. Mol Reprod Dev 57:99–107

    Article  PubMed  CAS  Google Scholar 

  34. Kaneda N, Talukder AH, Ishihara M et al (1996) Structural characteristics of heparin-line domain required for interaction of midkine with embryonic neurons. Biochem Biophys Res Commun 220:108–112

    Article  PubMed  CAS  Google Scholar 

  35. Kaneda N, Talukder AH, Nishiyama H et al (1996) Midkine, a heparin-binding growth/differentiation factor, exhibits nerve cell adhesion and guidance activity for neurite outgrowth in vitro. J Biochem 119:1150–1156

    Article  PubMed  CAS  Google Scholar 

  36. Ikeda S, Ichihara-Tanaka K, Azuma T et al (2000) Effects of midkine during in vitro maturation of bovine oocytes on subsequent developmental competence. Biol Reprod 63:1067–1074

    Article  PubMed  CAS  Google Scholar 

  37. Ikeda S, Saeki K, Imai H et al (2006) Abilities of cumulus and granulosa cells to enhance the developmental competence of bovine oocytes during in vitro maturation period are promoted by midkine; a possible implication of its apoptosis suppressing effects. Reproduction 132:549–557

    Article  PubMed  CAS  Google Scholar 

  38. Ikeda S, Imai H, Yamada M (2003) Apoptosis in cumulus cells during in vitro maturation of bovine cumulus-enclosed oocytes. Reproduction 125:369–376

    Article  PubMed  CAS  Google Scholar 

  39. Hussein TS, Froiland DA, Amato F et al (2005) Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci 118:5257–5268

    Article  PubMed  CAS  Google Scholar 

  40. Ohuchida T, Okamoto K, Akahane K et al (2004) Midkine protects hepatocellular carcinoma cells against TRAIL-mediated apoptosis through down-regulation of caspase-3 activity. Cancer 100:2430–2436

    Article  PubMed  CAS  Google Scholar 

  41. Owada K, Sanjo N, Kobayashi T et al (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73:2084–2092

    PubMed  CAS  Google Scholar 

  42. Qi M, Ikematsu S, Ichihara-Tanaka K et al (2000) Midkine rescues Wilms’ tumor cells from cisplatin-induced apoptosis: regulation of Bcl-2 expression by Midkine. J Biochem 127:269–277

    Article  PubMed  CAS  Google Scholar 

  43. Cioffi JA, Van Blerkom J, Antczak M et al (1997) The expression of leptin and its receptors in pre-ovulatory human follicles. Mol Hum Reprod 3:467–472

    Article  PubMed  CAS  Google Scholar 

  44. Craig J, Zhu H, Dyce PW et al (2004) Leptin enhances oocyte nuclear and cytoplasmic maturation via the mitogen-activated protein kinase pathway. Endocrinology 145:5355–5363

    Article  PubMed  CAS  Google Scholar 

  45. Kawamura K, Kawamura N, Mulders SM et al (2005) Ovarian brain-derived neurotrophic factor (BDNF) promotes the development of oocytes into preimplantation embryos. Proc Natl Acad Sci USA 102:9206–9211

    Article  PubMed  CAS  Google Scholar 

  46. Martins da Silva SJ, Gardner JO, Taylor JE et al (2005) Brain-derived neurotrophic factor promotes bovine oocyte cytoplasmic competence for embryo development. Reproduction 129:423–434

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayasu Yamada .

Editor information

Editors and Affiliations

Additional information

Funding: This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by grants from the Ito Foundation and the Association of Livestock Technology (Japan).

Conflict of interest: The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yamada, M., Isaji, Y., Ikeda, S. (2012). Midkine, a Factor Promoting Cytoplasmic Maturation of Oocytes. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_16

Download citation

Publish with us

Policies and ethics