Tracking Social Life and Crime

Chapter

Abstract

An individual’s decision to commit a crime is influenced, among other things, by his/her whereabouts over time and space. In this chapter, we suggest the use of geographic information systems (GIS), combined with space–time budget techniques, to visualise and track individuals’ daily activities patterns. We first test several GIS-based visualisation techniques for handling spatial and temporal dimensions of activity patterns using a dataset of adolescents in Peterborough, UK. Later, we show how these spatial methods can support the creation of measures of environmental exposure that may help predict group-level offending. Findings indicate that visualisation techniques are effective tools for exploratory analysis of how individuals differ in their patterns of activity across the city. Results also show that tracking groups of individuals by using measures of environmental exposure, in combination with individual characteristics and settings, can help explain differences in their levels of offending.

Keywords

Geographic Information System Time Budget Modifiable Areal Unit Problem Social Disorganisation Theory Risky Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amir, M. (1971). Patterns in forcible rape. Chicago: University of Chicago Press.Google Scholar
  2. Brantingham, P., & Brantingham, P. (1995). Criminality of place: Crime generators and crime attractors. European Journal on Criminal Policy and Research, 3(3), 1–26.CrossRefGoogle Scholar
  3. Cambridgeshire Constabulary. (2005). Police official statistics.Google Scholar
  4. Canter, D., & Larkin, P. (1993). The environmental range of serial rapists. Journal of Environmental Psychology, 13(1), 63–49.CrossRefGoogle Scholar
  5. Ceccato, V. (2009). Crime in a city in transition: The case of Tallinn, Estonia. Urban Studies, 46(8), 1611–1638.CrossRefGoogle Scholar
  6. Cohen, L. E., & Felson, M. (1979). Social change and crime rate trends: A routine activity approach. American Sociological Review, 44(August), 588–605.CrossRefGoogle Scholar
  7. Corbett, J. (2001). Torsten Harstrand: Time Geography. Center for spatially integrated social sciences. Available at http://www.csiss.org/classics/content/29. Assessed 10 Nov 2011.
  8. Costello, A., & Wiles, P. (2001). GIS and the journey to crime: An analysis of patterns in South Yorkshire. In A. Hirschfield & K. Bowers (Eds.), Mapping and analysing crime data lessons from research and practice (pp. 27–60). London: Taylor & Francis.Google Scholar
  9. Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Journal Personal and Ubiquitous Computing, 10(4), 255–268.CrossRefGoogle Scholar
  10. Ferguson, S. H., Taylor, M. K., Born, E. W., Rosing-Asvid, A., & Messier, F. (1999). Determinants of home range size for polar bears (Ursus maritimus). Ecology Letters, 2(5), 311–318.CrossRefGoogle Scholar
  11. Forer, P. C., & Kivell, H. (1981). Space-time budgets, public transport, and spatial choice. Environment and Planning A, 13(4), 497–509.CrossRefGoogle Scholar
  12. Fotheringham, A. S., & Wong, D. W. S. (1991). The modifiable areal unit problem in multivariate statistical analysis. Environment and Planning A, 23(7), 1025–1044.CrossRefGoogle Scholar
  13. Fritzon, K. (2001). An examination of the relationship between distance travelled and motivational aspects of fire setting behaviour. Journal of Environmental Psychology, 21(1), 45–60.CrossRefGoogle Scholar
  14. Gahegan, M. (1999). Four barriers to the development of effective exploratory visualisation tools for the geosciences. International Journal of Geographic Information Science, 13(4), 289–309.CrossRefGoogle Scholar
  15. Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 4(2), 189–206.Google Scholar
  16. Golledge, R. G., & Stimson, R. J. (1997). Spatial behaviour. New York/London: The Guildford Press.Google Scholar
  17. Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453, 779–782.CrossRefGoogle Scholar
  18. Gore, R. Z., & Pattavina, A. (2004). Applications for examining the journey-to-crime using incident-based offender residence probability surfaces. Police Quarterly, 7(4), 457–474.CrossRefGoogle Scholar
  19. Gottfredson, D. C., McNeil, R. J., & Gottfredson, G. D. (1991). Social area influences on delinquency: A multilevel analysis. Journal of Research in Crime and Delinquency, 28(2), 197–226.CrossRefGoogle Scholar
  20. Griffith, D. A. (1983). The boundary value problem in spatial statistical analysis. Journal of Regional Science, 23(3), 283–307.CrossRefGoogle Scholar
  21. Groff, E., Weisburd, D., & Morris, N. A. (2009). Where the action is at places: Examining spatio-temporal patterns of juvenile crime at places using trajectory analysis and GIS. In D. Weisburd, W. Bernasco, & G. Bruinsma (Eds.), Putting crime in its place (pp. 61–86). New York: Springer.CrossRefGoogle Scholar
  22. Hägerstrand, T. (1970). What about people in regional science? Papers in Regional Science Association, 24(1), 7–21.CrossRefGoogle Scholar
  23. Hooge P. N., & Eichenlaub, B. (2000). Animal movement extension to Arcview, version 2.0. Anchorage, AK: Alaska Science Center – Biological Science Office, U.S. Geological Survey.Google Scholar
  24. Huisman, O., & Forer, P. (1998). Computational agents and urban life spaces: A preliminary realisation of the time-geography of student lifestyles. Computational agents and urban life spaces. http://www.geocomputation.org/1998/68/gc_68a.htm. Assessed 10 Nov 2011.
  25. Janelle, D. G., Goodchild, M. F., & Klinkenberg, B. (1988). Space-time diaries and travel characteristics for different levels of respondent aggregation. Environment and Planning A, 20(7), 891–906.CrossRefGoogle Scholar
  26. Kornhauser, R. (1978). Social sources of delinquency. Chicago: University of Chicago Press.Google Scholar
  27. Krak, M. (2003). The space-time cube revisited from a geovisualisation perspective. Proceedings of the 21st International Cartographic Conference (ICC), Durban, South Africa. http://www.itc.nl/personal/kraak/. Assessed 10 Nov 2011.
  28. Kwan, M. P. (1998). Space-time and integral measures of individual accessibility: A comparative analysis using a point-based network. Geographical Analysis, 30, 191–216.CrossRefGoogle Scholar
  29. Kwan, M. P. (1999). Gender and individual access to urban opportunities: A study using space-time measures. The Professional Geographer, 51(2), 210–227.CrossRefGoogle Scholar
  30. Kwan, M. P. (2000). Interactive geovisualisation of activity-travel patterns using three-dimensional geographical information systems: A methodological exploration with a large data set. Transportation Research Part C, 8(1–6), 185–2003.CrossRefGoogle Scholar
  31. LeBeau, J. L. (1987). The journey to rape: Geographic distance and the rapist’s method of approaching the victim. Journal of Police Science and Administration, 15(2), 129–161.Google Scholar
  32. Lenntorp, B. (1976). Paths in space-time environments: A time geographic study of movement possibilities of individuals. Lund Studies in Geography, 44, Royal University of Lund, Sweden.Google Scholar
  33. Lundigran, S., & Canter, D. (2001). A multivariate analysis of serial murderers’ disposal site location choice. Journal of Environmental Psychology, 21(4), 423–432.CrossRefGoogle Scholar
  34. Mey, M. G., & Heide, H. (1997). Towards spatiotemporal planning: Practicable analysis of the day-to-day paths through space and time. Environment and Planning B, 24(5), 709–723.CrossRefGoogle Scholar
  35. Miller, H. J. (2003). What about people in geographic information science? Computers, Environment and Urban Systems, 27(5), 447–453.CrossRefGoogle Scholar
  36. Openshaw, S. (1984). The modifiable areal unit problem. Concepts and Techniques in Modern Geography, 38. Norwich: Geo Books.Google Scholar
  37. Osgood, W. D., Wilson, J. K., O’Malley, P., Bachman, G. J., & Johnston, L. D. (1996). Routine activities and individual deviant behavior. American Sociological Review, 61(4), 635–655.CrossRefGoogle Scholar
  38. Pentland, W. E., Harvey, A. S., Lawton, M. P., & McMoll, M. A. (1999). Time use research in the social sciences. New York: Kluwer Academic/Plenum.Google Scholar
  39. Peuquet, D. J. (1994). It’s About time: A conceptual framework for the representation of temporal dynamics in GIS. Annals of the Association of American Geographers, 84(3), 441–461.CrossRefGoogle Scholar
  40. Ratcliffe, J. H., & McCullagh, M. J. (1999). Hotbeds of crime and the search for spatial accuracy. Geographical Systems, 1(4), 385–398.CrossRefGoogle Scholar
  41. Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M., Claxton, R., & Strogatz, S. H. (2010). Redrawing the map of Great Britain from a network of human interactions. PLoS One, 5(12), e14248. doi: 10.1371/journal.pone.0014248.CrossRefGoogle Scholar
  42. Raudenbush, S. W., & Sampson, R. J. (1999). Ecometrics: Toward a science of assessing ecological settings, with application to the systematic social observation of neighborhoods. Sociological Methodology, 29(1), 1–41.CrossRefGoogle Scholar
  43. Reiss, R. (1961). The distribution of juvenile delinquency in the social class structure. American Sociological Review, 26(5), 720–732.CrossRefGoogle Scholar
  44. Rhodes, W. M., & Conly, C. (1981). Crime and mobility: An empirical study. In P. J. Brantingham & P. L. Brantingham (Eds.), Environmental criminology (pp. 11–26). Beverly Hills: Sage.Google Scholar
  45. Robinson, W. S. (1950). Ecological correlations and the behaviour of individuals. American Sociological Review, 15(3), 351–357.CrossRefGoogle Scholar
  46. Roncek, D. W., & Maier, P. A. (1991). Bars, blocks, and crimes revisited: Linking the theory of routine activities to the empiricism of hot spots. Criminology, 29(4), 725–755.CrossRefGoogle Scholar
  47. Rossmo, D. K. (2000). Geographic profiling. Boca Raton: CRC Press.Google Scholar
  48. Sampson, R. J., Raudenbush, S. W., & Earls, F. (1997). Neighborhoods and violent crime: A multilevel study of collective efficacy. Science, 277, 918–924.CrossRefGoogle Scholar
  49. Schönfoelder, S., & Axhausen, K. W. (2003). Activity spaces: Measures of social exclusion? Arbeitsbericht Verkerhrs- und Raumplanung, 140, Institut für Verkehrsplanung und transportsysteme (IVT), ETH Zürich, Zürich. http://ideas.repec.org/a/eee/trapol/v10y2003i4p273–286.html. Assessed 10 Nov 2011.
  50. Shaw, C. R., & Mckay, H. D. (1942). Juvenile delinquency and urban areas. Chicago: University of Chicago Press.Google Scholar
  51. Song, C., Qu, Z., Blumm, N., & Barabasi, A. L. (2010). Limits of predictability in human mobility. Science, 327, 1018–1021.CrossRefGoogle Scholar
  52. Takahashi, L. M., Wiebe, D., & Rodriguez, R. (2001). Navigating the time-space context of HIV and AIDS: Daily routines and access to care. Social Science & Medicine, 53(7), 845–863.CrossRefGoogle Scholar
  53. Tomlinson, J., Bullock, N., Dickens, P., Steadman, P., & Taylor, E. (1973). A model of student’s daily activity patterns. Environment and Planning, 5(2), 231–266.CrossRefGoogle Scholar
  54. Turner, S. (1969). Delinquency and distance. In T. Sellin & M. E. Wolfgang (Eds.), Delinquency: Selected studies (pp. 11–26). New York: Wiley.Google Scholar
  55. White, R. C. (1932). The relations of felonies to environmental factors in Indianapolis. Social Forces, 10(4), 498–509.CrossRefGoogle Scholar
  56. Wikström, P. O. (2005). The social origins of pathways in crime: Towards a developmental ecological action theory of crime involvement and its changes. In D. P. Farrington (Ed.), Integrated developmental and life-course theories of offending (pp. 211–246). New Brunswick: Transaction.Google Scholar
  57. Wikström, P. O. (2006). Individuals, settings and acts of crime: Situational mechanisms and the explanation of crime. In P. O. Wikström & R. J. Sampson (Eds.), The explanation of crime: Context, mechanisms and development. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  58. Wikström, P. O. H. (2010). Explaining crime as moral actions. In S. Hitlin, & S. Vaisey (Eds.), Handbook of the Sociology of Morality, Springer Science+Business Media, doi: 10.1007/978-1-4419-6896-8_12.
  59. Wikström, P. O., & Loeber, R. (2000). Do disadvantaged neighbourhoods cause well-adjusted children to become individual delinquents? Criminology, 38(4), 1109–1142.CrossRefGoogle Scholar
  60. Wikström, P. O., & Loeber, R. (2004). The social origins of pathways in crime: Towards a developmental ecological action theory of crime involvement and its changes. In D. P. Farrington (Ed.), Integrated developmental and life course theories of offending. Advances in criminological theory, 14 (pp. 211–45). New Brunswick: Transaction.Google Scholar
  61. Wikström, P. O., Ceccato, V., Hardie, B., & Treiber, K. (2010). Activity fields and the dynamics of crime: Advancing knowledge about the role of the environment in crime causation. Journal of Quantitative Criminology, 26(1), 55–87.CrossRefGoogle Scholar
  62. Wikström, P. O., Treiber, K., & Hardie, B. (2011). Examining the role of the environment in crime causation: Small-area community surveys and space–time budgets. In D. Gadd, S. Karstedt, & S. F. Messner (Eds.), The SAGE handbook of criminological research methods (pp. 111–127). London: Sage.Google Scholar
  63. Worton, B. J. (1989). Kernel methods for estimating the utilization distribution in home-range studies. Ecology, 70(1), 164–168.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of Architecture and the Built EnvironmentRoyal Institute of Technology (KTH)StockholmSweden
  2. 2.Institute of CriminologyUniversity of CambridgeCambridgeUK

Personalised recommendations