Hybrid Sonochemical Treatment of Contaminated Wastewater: Sonophotochemical and Sonoelectrochemical Approaches. Part I: Description of the Techniques



Sonochemical oxidation is one of the advanced oxidation techniques that are widely used to decompose various organic contaminants in aqueous environment. Recent studies have suggested that the use of hybrid techniques is more effective compared to individual techniques for the decomposition of organic contaminants. The combination of more than one oxidation technique overcomes the disadvantages of individual techniques. This chapter deals with the instrumentation aspects of sonochemistry on its own and its combination with photocatalysis and electrochemistry. Various experimental parameters such as ultrasound frequency, power, lab-scale and large-scale equipment used for the sonochemical oxidation of organic contaminants have been analyzed using several examples available in the literature.


Ultrasonic Irradiation Acoustic Power Ultrasound Irradiation Acoustic Cavitation Ultrasonic Horn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc 49:3086–3100Google Scholar
  2. 2.
    Wood R, Loomis AL (1927) The physical and biological effects of high-frequency sound-waves of great intensity. Philos Mag Ser 4:417–436Google Scholar
  3. 3.
    Ashokkumar M (2007) Sonochemistry. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, HobokenGoogle Scholar
  4. 4.
    Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg C (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov Food Sci Emerg Technol 9:155–160Google Scholar
  5. 5.
    Suslick KS (1988) Ultrasound, its chemical, physical and biological effects. VCH, New YorkGoogle Scholar
  6. 6.
    Bang JH, Han K, Skrabalak SH, Kim H, Suslick KS (2007) Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrode. J Phys Chem C 111:10959–10964Google Scholar
  7. 7.
    Neppolian B, Celik E, Anpo M, Choi H (2008) Ultrasonic-assisted pH Swing method for the synthesis of highly efficient TiO2 nano-size photocatalysts. Catal Lett 125:183–191Google Scholar
  8. 8.
    Neppolian B, Haeryong J, Choi H, Lee JH, Kang JW (2002) Sonolytic degradation of methyl tert-butyl ether: the role of coupled Fenton process and persulphate ion. Water Res 36: 4699–4708Google Scholar
  9. 9.
    Neppolian B, Park JS, Choi H (2004) Effect of Fenton-like oxidation on enhanced oxidative degradation of para-chlorobenzoic acid by ultrasonic irradiation. Ultrason Sonochem 11: 273–279Google Scholar
  10. 10.
    Singla R, Grieser F, Ashokkumar M (2004) The mechanism of the sonochemical degradation of benzoic acid in aqueous solutions. Res Chem Intermed 30:723–733Google Scholar
  11. 11.
    Singla R, Grieser F, Ashokkumar M (2009) Kinetics and mechanism for the sonochemical degradation of a nonionic surfactant. J Phys Chem A 113:2865–2872Google Scholar
  12. 12.
    Vecitis CD, Wang Y, Cheng J, Park H, Mader B, Hoffmann MR (2010) Sonochemical degradation of perfluorooctanesulfonate in aqueous film-forming foams. Environ Sci Technol 44:432–438Google Scholar
  13. 13.
    Yang L, Sostaric JZ, Rathman JF, Weavers LK (2008) Effect of ultrasound frequency on pulsed sonolytic degradation of octylbenzene sulfonic acid. J Phys Chem B 112:852–858Google Scholar
  14. 14.
    Yang L, Rathman JF, Weavers LK (2005) Sonochemical degradation of alkylbenzene sulfonate surfactants in aqueous mixtures. J Phys Chem B 110:18385–18391Google Scholar
  15. 15.
    Zhang GM, Zhang PY, Yang JM, Chen YM (2007) Ultrasonic reduction of excess sludge from the activated sludge system. J Hazard Mater 145:515–519Google Scholar
  16. 16.
    Lim M, Son Y, Park B, Khim J (2010) Sonophotochemical degradation of Bisphenol A with solid catalysts. Jpn J Appl Phys 49:07HEO6Google Scholar
  17. 17.
    Gultekin I, Tezcanli-Guyer G, Ince NH (2009) Degradation of 4-n-nonylphenol in water by 20 kHz ultrasound. J Adv Oxid Technol 12:105–110Google Scholar
  18. 18.
    Hamdaoui O, Naffrechoux E (2008) Sonochemical and photosonochemical degradation of 4-chlorophenol in aqueous media. Ultrason Sonochem 15:981–987Google Scholar
  19. 19.
    Guo ZB, Zheng Z, Zheng SR, Hu WY, Feng R (2005) Effect of various sono-oxidation parameters on the removal of aqueous 2,4-dinitrophenol. Ultrason Sonochem 12:461–465Google Scholar
  20. 20.
    Little C, Hepher MJ, El-Sharif M (2002) The sono-degradation of phenanthrene in an aqueous environment. Ultrasonics 40:667–674Google Scholar
  21. 21.
    Kim JK, Martinez F, Metcalfe IS (2007) The beneficial role of use of ultrasound in heterogeneous Fenton-like system over supported copper catalysts for degradation of p-chlorophenol. Catal Today 124:224–231Google Scholar
  22. 22.
    Suh WH, Jang AR, Suh YH, Suslick KS (2006) Porous, hollow, and ball-in-ball metal oxide microspheres: preparation, endocytosis, and cytotoxicity. Adv Mater 18:1832–1837Google Scholar
  23. 23.
    Muthukumaran S, Kentish SE, Stevens GW, Ashokkumar M (2006) Application of ultrasound in membrane separation process: a review. Rev Chem Eng 22:155–194Google Scholar
  24. 24.
    Neppolian B, Doronila A, Ashokkumar M (2010) Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res 44:3687–3695Google Scholar
  25. 25.
    Neppolian B, Doronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic (III) to arsenic (V). Environ Sci Technol 43:6793–6798Google Scholar
  26. 26.
    Okitsu K, Ashokkumar M, Grieser F (2005) Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B 109:20673–20675Google Scholar
  27. 27.
    Singla R, Grieser F, Ashokkumar M (2009) Sonochemical degradation of martius yellow dye in aqueous solution. Ultrason Sonochem 16:28–34Google Scholar
  28. 28.
    Vinodgopal K, He Y, Ashokkumar M, Grieser F (2006) Sonochemically prepared platinum-ruthenium bimetallic nanoparticles. J Phys Chem B 110:3849–3852Google Scholar
  29. 29.
    Ashokkumar M, Hodnett M, Zeqiri GF, Price GJ (2007) Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. J Am Chem Soc 129:2250–2258Google Scholar
  30. 30.
    Neppolian B, Ciceri L, Bianchi CL, Grieser F, Ashokkumar M (2011) Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst. Ultrason Sonochem 18:1832–1837Google Scholar
  31. 31.
    Weavers L, Malmstadt N, Hoffmann MR (2000) Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environ Sci Technol 34:1280–1285Google Scholar
  32. 32.
    Ferguson MA, Hering JG (2006) TiO2-photocatalyzed As (III) oxidation in a fixed-bed, flow-through reactor. Environ Sci Technol 40:4261–4267Google Scholar
  33. 33.
    Iqbal J, Kim HJ, Yang JS, Baek K, Yang JW (2007) Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere 66:970–976Google Scholar
  34. 34.
    Johnston RB, Singer PC (2007) Redox reactions in the Fe-As-O2 system. Chemosphere 69:517–525Google Scholar
  35. 35.
    Kanel SR, Manning B, Charlet L, Choi HC (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298Google Scholar
  36. 36.
    Kim MJ, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. J Sci Total Environ 247:71–79Google Scholar
  37. 37.
    Lee H, Choi W (2002) Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms. Environ Sci Technol 36:3872–3878Google Scholar
  38. 38.
    Madhavan J, Kumar S, Anandan A, Grieser F, Ashokkumar M (2010) Sonophotocatalytic degradation of monocrotophos using TiO2 and Fe3+. J Hazard Mater 177:944–949Google Scholar
  39. 39.
    Madhavan J, Grieser F, Ashokkumar M (2010) Degradation of orange-G by advanced oxidation processes. Ultrason Sonochem 17:338–343Google Scholar
  40. 40.
    Madhavan J, Grieser F, Ashokkumar M (2010) Combined advanced oxidation processes for the synergistic degradation of ibuprofen in aqueous environments. J Hazard Mater 178: 202–208Google Scholar
  41. 41.
    Madhavan J, Grieser F, Ashokkumar M (2010) Degradation of formetanate hydrochloride by combined advanced oxidation processes. Sep Purif Technol 73:409–414Google Scholar
  42. 42.
    Madhavan J, Kumar S, Anandan S, Zhou M, Grieser F, Ashokkumar M (2010) Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere 80:747–752Google Scholar
  43. 43.
    Madhavan J, Kumar S, Anandan S, Grieser F, Ashokkumar M (2010) Degradation of acid red 88 by the combination of sonolysis and photocatalysis. Sep Purif Technol 74:336–341Google Scholar
  44. 44.
    Madhavan M, Grieser F, Ashokkumar M (2009) Kinetics of the sonophotocatalytic degradation of orange G in presence of Fe3+. Water Sci Technol 60:2195–2202Google Scholar
  45. 45.
    Kamat PV (2011) Graphene-based nanoassemblies for energy conversion. J Phys Chem Lett 2:242–251Google Scholar
  46. 46.
    Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1:520–527Google Scholar
  47. 47.
    Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a 2-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583Google Scholar
  48. 48.
    Rao CNR, Sood AK, Voggu R, Subrahmanyam KS (2010) Some novel attributes of graphene. J Phys Chem Lett 1:572–580Google Scholar
  49. 49.
    Seger B, Kamat PV (2009) Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995Google Scholar
  50. 50.
    Vinodgopal K, Neppolian B, Lightcap IV, Grieser F, Ashokkumar M, Kamat PV (2010) Sonolytic design of graphene-Au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J Phys Chem Lett 1:1987–1993Google Scholar
  51. 51.
    Williams G, Seger B, Kamat PV (2008) TiO2-Graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491Google Scholar
  52. 52.
    Williams G, Kamat PV (2009) Graphene-semiconductor nanocomposites. Excited state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873Google Scholar
  53. 53.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P-25 graphene composite as a high performance photocatalyst. ACS Nano 4:380–386Google Scholar
  54. 54.
    Brotchie A, Ashokkumar M, Grieser F (2007) Effect of water-soluble solutes on sonoluminescence under dual-frequency sonication. J Phys Chem C 111:3066–3070Google Scholar
  55. 55.
    Kanthale PM, Brotchie A, Ashokkumar M, Grieser F (2008) Experimental and theoretical investigations on sonoluminescence under dual frequency conditions. Ultrason Sonochem 15:629–635Google Scholar
  56. 56.
    Brotchie A, Ashokkumar M, Grieser F (2008) Sonochemistry and sonoluminescence under dual-frequency ultrasound irradiation in the presence of water-soluble solutes. J Phys Chem C 112:10247–10250Google Scholar
  57. 57.
    Vijayanand SM (2009) Mechanistic optimization of a dual frequency sonochemical reactor. Chem Eng Sci 64:5255–5267Google Scholar
  58. 58.
    Sivakumar M, Pandit AB (2001) Ultrasound enhanced degradation of Rhodamine B: optimization with power density. Ultrason Sonochem 8:233–240Google Scholar
  59. 59.
    Gogate PR, Sivakumar M, Pandit AB (2004) Destruction of Rhodamine B using novel sonochemical reactor with capacity of 7.5l. Sep Purif Technol 34:13–24Google Scholar
  60. 60.
    Gondrexon N, Renaudin V, Petrier C, Boldo P, Bernis A, Gonthier Y (1999) Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor: experimental performance and modeling. Ultrason Sonochem 5:125–131Google Scholar
  61. 61.
    Entezari MH, Petrier C, Devidal P (2003) Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrason Sonochem 10:103–108Google Scholar
  62. 62.
    Son Y, Lim M, Khim J (2009) Investigation of acoustic cavitation energy in a large-scale sonoreactor. Ultrason Sonochem 16:552–556Google Scholar
  63. 63.
    Vinu R, Madras G (2009) Kinetics of sonophotocatalytic degradation of anionic dyes with nano-TiO2. Environ Sci Technol 43:473–479Google Scholar
  64. 64.
    Dorathi RPJ, Palanivelu K (2010) Sonochemical degradation of p-chlorophenol in aqueous solution using hypervalent iron. Ind J Chem Technol 17:111–119Google Scholar
  65. 65.
    Bremner DH, Molina R, Martinez F, Melero JA, Segura Y (2009) Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US-Fe2O3/SBA-15-H2O2). Appl Catal B-Environ 90:380–388Google Scholar
  66. 66.
    Luo T, Ai ZH, Zhang LZ (2008) Fe@Fe2O3 core-shell nanowires as iron reagent. 4. Sono-Fenton degradation of pentachlorophenol and the mechanism analysis. J Phys Chem C 112:8675–8681Google Scholar
  67. 67.
    Ioan I, Wilson S, Lundanes E, Neculai A (2007) Comparison of Fenton and sono-Fenton bisphenol A degradation. J Hazard Mater 142:559–563Google Scholar
  68. 68.
    Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597Google Scholar
  69. 69.
    Ragaini V, Selli E, Bianchi CL, Pirola C (2001) Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques. Ultrason Sonochem 8:251–258Google Scholar
  70. 70.
    Stock N, Peller J, Vinodgopal K, Kamat PV (2000) Combinative sonolysis and photocatalysis for textile dye degradation. Environ Sci Technol 34:1747–1750Google Scholar
  71. 71.
    Kang JW, Hoffmann MR (1998) Kinetics and mechanism of the sonolytic destruction of methyl tert-butyl ether by ultrasonic irradiation in the presence of ozone. Environ Sci Technol 32:3194–3199Google Scholar
  72. 72.
    Hua I, Hoffmann MR (1997) Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ Sci Technol 31:2237–2243Google Scholar
  73. 73.
    Lesko T, Colussi AG, Hoffmann MR (2006) Sonochemical decomposition of phenol: evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environ Sci Technol 40:6818–6823Google Scholar
  74. Neppolian B, Bruno A, Bianchi CL, Ashokkumar M (2012) Graphene oxide based Pt-TiO2 photocatalyst: Ultrasound assisted synthesis, characterization and catalytic efficiency. Ultrason Sonochem 19:9–15.Google Scholar
  75. Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059.Google Scholar
  76. Didenko YT, Suslick KS (2005) Chemical aerosol flow synthesis of semiconductor nanoparticles. J Am Chem Soc 127:12196–12197.Google Scholar
  77. Zhou S, Yuan R, Lou S, Wang Y, Yuan H, Zhu G, Liu L, Hao Y, Li N (2011) Sonochemical synthesis and optical properties of amorphous ZnO nanowires. J. Nanoparticle Res 13:4511–4518.Google Scholar
  78. Chen Y, Zhu CL, Xiao G (2006) Reduced-temperature ethanol sensing characteristics of flower-like ZnO nanorods synthesized by a sonochemical method. Nanotech 17:4537–4541.Google Scholar
  79. Suh WH, Jang AR, Suh YH, Suslick KS (2006) Porous, hollow, and ball-in-ball metal oxide microspheres: reparation, endocytosis, and cytotoxicity. Adv Mater 18:1832–1837.Google Scholar
  80. 80.
    Neppolian B, Wang Q, Jung H, Choi H (2008) Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: characterization, properties and 4-chlorophenol removal application. Ultrason Sonochem 15:649–658Google Scholar
  81. 81.
    Morigushi N (1934) The effect of supersonic waves on chemical phenomena (III). The effect on the concentration polarization. J Chem Soc Jpn 55:749–750Google Scholar
  82. 82.
    Mason TJ, Lorimer JP, Walton DJ (1990) Sonoelectrochemistry. Ultrasonics 28:333–337Google Scholar
  83. 83.
    Pollet BG, Phull SS (2001) Sonoelectrohemistry-theory, principles and applications. Recent Res Dev Electrochem 4:55–78Google Scholar
  84. 84.
    Brett C (2008) Sonoelectrochemistry. In: Arnau Vives A (ed) Piezoelectric transducer and applications. Springer, Berlin/HeidelbergGoogle Scholar
  85. 85.
    Walton DJ, Phull SS (1996) Sonoelectrochemistry. Adv Sonochem 4:205–284Google Scholar
  86. 86.
    Compton RG, Eklund JC, Marken F (1997) Sonoelectrochemical processes. A review. Electroanalysis 9:509–522Google Scholar
  87. 87.
    González-García J, Esclapez MD, Bonete P, Vargas-Hernández Y, Gaete-Garretón L, Sáez V (2010) Current topics on sonoelectrochemistry. Ultrasonics 50:318–322Google Scholar
  88. 88.
    Klima J (2011) Application of ultrasound in electrochemistry. An overview of mechanisms and design of experimental arrangement. Ultrasonics 51:202–209Google Scholar
  89. 89.
    González-García J (2011) Sonoelectrochemical synthesis of materials. In: Pankaj, Ashokkumar M (eds) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht/Heidelberg/London/New YorkGoogle Scholar
  90. 90.
    González-García J, Iniesta J, Aldaz A, Montiel V (1998) Effects of ultrasound on the electrodeposition of lead dioxide on glassy carbon electrodes. New J Chem 22:343–347Google Scholar
  91. 91.
    Hielscher Ultrasonics GmbH.
  92. 92.
    Sonics & Materials, INC.
  93. 93.
    Klíma J, Bernard C (1999) Sonoassisted electrooxidative polymerisation of salicylic acid: role of acoustic streaming and microjetting. J Electroanal Chem 462:181–186Google Scholar
  94. 94.
    Klíma J, Bernard C, Degrand C (1994) Sonoelectrochemistry: effects of ultrasound on voltammetric measurements at a solid electrode. J Electroanal Chem 367:297–300Google Scholar
  95. 95.
    Mohapatra SK, Raja KS, Misra M, Mahajan VK, Ahmadian M (2007) Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti-8Mn alloy. Electrochim Acta 53:590–597Google Scholar
  96. 96.
    Esclapez MD, Sáez V, Milán-Yáñez D, Tudela I, Louisnard O, González-García J (2010) Sonoelectrochemical treatment of water polluted with trichloroacetic acid: from sonovoltammetry to pre-pilot plant scale. Ultrason Sonochem 17:1010–1020Google Scholar
  97. 97.
    Sáez V, Esclapez MD, Frías-Ferrer AJ, Bonete P, Tudela I, Díez-García MI, González-García J (2011) Lead dioxide film sonoelectrodeposition in acidic media: preparation and performance of stable practical anodes. Ultrason Sonochem 18:873–880Google Scholar
  98. 98.
    Durant A, François H, Reisse J, Kirsch-DeMesmaeker A (1996) Sonoelectrochemistry: the effects of ultrasound on organic electrochemical reduction. Electrochim Acta 41:277–284Google Scholar
  99. 99.
    Compton RG, Hardcastle JL, del Campo J (2003) Sonoelectrochemistry: physical aspects. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 3. Wiley-VCH, WeinheimGoogle Scholar
  100. 100.
    Birkin PR, Offin DG, Joseph PF, Leighton TG (2005) Cavitation, shock waves and the invasive nature of sonoelectrochemistry. J Phys Chem B 109:16997–17005Google Scholar
  101. 101.
    Marken F, Compton RG (1998) Sonoelectrochemically modified electrodes: ultrasound assisted electrode cleaning, conditioning, and product trapping in 1-octanol/water emulsion systems. Electrochim Acta 43:2157–2165Google Scholar
  102. 102.
    Rejňák M, Klíma J, Svodoba J, Ludvik J (2004) Synthesis and electrochemical reduction of methyl 3-halo-1-benzothiophene-2-carboxylates. Collect Czechoslov Chem Commun 69:242–260Google Scholar
  103. 103.
    Zhang H, Coury LA Jr (1993) Effects of high-intensity ultrasound on glassy carbon electrodes. Anal Chem 65:1552–1558Google Scholar
  104. 104.
    Compton RG, Eklund JC, Page SD, Sanders GHW, Booth J (1994) Voltammetry in the presence of ultrasound. Sonovoltammetry and surface effects. J Phys Chem 98:12410–12414Google Scholar
  105. 105.
    Cooper EL, Coury LA Jr (1998) Mass transport in sonovoltammetry with evidence of hydrodynamic modulation from ultrasound. J Electrochem Soc 145:1994–1999Google Scholar
  106. 106.
    Advanced Sonic Processing Systems Company.
  107. 107.
    Perret A, Haenni W, Skinner N, Tang NM, Gandini D, Comninellis C, Correa B, Foti G (1999) Electrochemical behavior of synthetic diamond thin film electrodes. Diam Relat Mater 8: 820–823Google Scholar
  108. 108.
    Iordache I, Nechita MT, Rosca I, Aelenei N (2004) Ultrasound assisted electrochemical degradation of cyanides: influence of electrode type. Turk J Eng Environ Sci 28:377–380Google Scholar
  109. 109.
    Kraft A, Blaschke M, Kreysig D (2002) Electrochemical water disinfection part III: hypochlorite production from potable water with ultrasound assisted cathode cleaning. J Appl Electrochem 32:597–601Google Scholar
  110. 110.
    Walker R (1997) Ultrasound improves electrolytic recovery of metals. Ultrason Sonochem 4:39–43Google Scholar
  111. 111.
    Farooq R, Wang Y, Lin F, Shaukat SF, Donaldson J, Chouhdary AJ (2002) Effect of ultrasound on the removal of copper from the model solutions for copper electrolysis process. Water Res 36:3165–3169Google Scholar
  112. 112.
    Yaqub A, Ajab H, Khan S, Farooq R (2009) Electrochemical removal of copper and lead from industrial wastewater: mass transport enhancement. Water Qual Res J Can 44:183–188Google Scholar
  113. 113.
    Hyde ME, Compton RG (2002) How ultrasound influences the electrodeposition of metals. J Electroanal Chem 531:19–24Google Scholar
  114. 114.
    Pollet BG, Lorimer JP, Phull SS, Mason TJ, Walton DJ, Hihn JY, Ligier V, Wéry M (1999) The effect of ultrasonic frequency and intensity upon electrode kinetic parameters for the Ag(S2O3)23−/Ag redox couple. J Appl Electrochem 29:1359–1366Google Scholar
  115. 115.
    Lorimer JP, Pollet BG, Phull SS, Mason TJ, Walton DJ (1998) The effect upon limiting currents and potentials of coupling a rotating disc and cylindrical electrode with ultrasound. Electrochim Acta 43:449–455Google Scholar
  116. 116.
    Pollet BG, Lorimer JP, Phull SS, Hihn JY (2000) Sonoelectrochemical recovery of silver from photographic processing solutions. Ultrason Sonochem 7:69–76Google Scholar
  117. 117.
    Pollet BG, Lorimer JP, Phull SS, Mason TJ, Hihn J-Y (2003) A novel angular geometry for the sonochemical silver recovery process at cylinder electrodes. Ultrason Sonochem 10:217–222Google Scholar
  118. 118.
    Pollet BG, Lorimer JP, Hihn JY, Touyeras F, Mason TJ, Walton DJ (2005) Electrochemical study of silver thiosulphate reduction in the absence and presence of ultrasound. Ultrason Sonochem 12:7–11Google Scholar
  119. 119.
    Compton RG, Eklund JC, Marken F, Waller DN (1996) Electrode processes at the surfaces of sonotrodes. Electrochim Acta 41:315–320Google Scholar
  120. 120.
    Pollet BG, Lorimer JP, Hihn J-Y, Phull SS, Mason TJ, Walton DJ (2002) The effect of ultrasound upon the oxidation of thiosulphate on stainless steel and platinum electrodes. Ultrason Sonochem 9:267–274Google Scholar
  121. 121.
    Allen HE, Chen PH (1993) Remediation of metal contaminated soil by EDTA incorporating electrochemical recovery of metal and EDTA. Environ Prog 12:284–293Google Scholar
  122. 122.
    Chang JH, Ellis AV, Yan CT, Tung CH (2009) The electrochemical phenomena and kinetics of EDTA-copper wastewater reclamation by electrodeposition and ultrasound. Sep Purif Technol 68:216–221Google Scholar
  123. 123.
    González-García J, Sáez V, Tudela I, Díez-García MI, Esclapez MD, Louisnard O (2010) Sonochemical treatment of water polluted by chlorinated organocompounds. A review. Water 2:28–74Google Scholar
  124. 124.
    Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166: 1066–1082Google Scholar
  125. 125.
    Krüger O, Schulze Th-L, Peters D (1999) Sonochemical treatment of natural ground water at different high frequencies: preliminary results. Ultrason Sonochem 6:123–128Google Scholar
  126. 126.
    Peters D (2001) Sonolytic degradation of volatile pollutants in natural ground water: conclusions from a model study. Ultrason Sonochem 8:221–226Google Scholar
  127. 127.
    Shemer H, Narkis N (2005) Sonochemical removal of trihalomethanes from aqueous solutions. Ultrason Sonochem 12:495–499Google Scholar
  128. 128.
    Selli E, Bianchi CL, Pirola C, Bertelli M (2005) Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis. Ultrason Sonochem 12:395–400Google Scholar
  129. 129.
    Rokhina EV, Repo E, Virkutyte J (2010) Comparative kinetic analysis of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol. Ultrason Sonochem 17: 541–546Google Scholar
  130. 130.
    Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17:990–1003Google Scholar
  131. 131.
    Sáez V, Esclapez MD, Tudela I, Bonete P, Louisnard O, González-García J (2010) Electrochemical degradation of perchloroethylene in aqueous media: influence of the electrochemical operational variables in the viability of the process. Ind Eng Chem Res 49:4123–4131Google Scholar
  132. 132.
    Sáez V, Esclapez MD, Bonete P, Walton DJ, Rehorek A, Louisnard O, González-García J (2011) Sonochemical degradation of perchloroethylene: the influence of ultrasonic variables, and the identification of products. Ultrason Sonochem 18:104–113Google Scholar
  133. 133.
    Sáez V, Esclapez MD, Tudela I, Bonete P, Louisnard O, González-García J (2010) 20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulphate aqueous media: influence of the operational variables in batch mode. J Hazard Mater 183:648–654Google Scholar
  134. 134.
    Sáez V, Tudela I, Esclapez MD, Bonete P, Louisnard O, González-García J (2011) Sonoelectrochemical degradation of perchloroethylene in water: enhancement of the process by the absence of background electrolyte. Chem Eng J 168:649–655Google Scholar
  135. 135.
    Gallego-Juárez JA, Rodriguez G, Acosta V, Riera E (2010) Power ultrasonic transducers with extensive radiators for industrial processing. Ultrason Sonochem 17:953–964Google Scholar
  136. 136.
    Tuziui T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2008) Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound. J Phys Chem A 112:4875–4878Google Scholar
  137. 137.
    Abdelsalam ME, Birkin PR (2002) A study investigating the sonoelectrochemical degradation of an organic compound employing Fenton’s reagent. Phys Chem Chem Phys 4:5340–5345Google Scholar
  138. 138.
    Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P (2007) FEM calculation of an acoustic field in a sonochemical reactor. Ultrason Sonochem 14:605–614Google Scholar
  139. 139.
    Louisnard O, González-García J, Tudela I, Klíma J, Sáez V, Vargas-Hernández Y (2009) FEM simulation of a sono-reactor accounting for vibrations of the boundaries. Ultrason Sonochem 16:250–259Google Scholar
  140. 140.
    Tudela I, Sáez V, Esclapez MD, Bonete P, Harzali H, Baillon F, González-García J, Louisnard O (2011) Study of the influence of transducer-electrode and electrode-wall gaps on the acoustic field inside a sonoelectrochemical reactor by FEM simulations. Chem Eng J. doi: 10.1016/j.cej.2011.03.064
  141. 141.
    Vanhille C, Campos-Pozuelo C (2011) Nonlinear ultrasonic standing waves: two-dimensional simulations in bubbly liquids. Ultrason Sonochem 18:679–682Google Scholar
  142. 142.
    Louisnard O (2011) A simple model of propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56–65Google Scholar
  143. 143.
    Louisnard O (2011) A simple model of propagation in a cavitating liquid. Part II: Primary Bjerkness force and bubble structures. Ultrason Sonochem 19:66–76Google Scholar
  144. 144.
    Ashokkumar M, Lee J, Iida Y, Yasui K, Kozuka T, Tuziuti T, Towata A (2009) The detection and control of stable and transient acoustic cavitation bubbles. Phys Chem Chem Phys 11:10118–10121Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.SRM Research InstituteSRM UniversityKattankulathur, ChennaiIndia
  2. 2.School of ChemistryUniversity of MelbourneMelbourneAustralia
  3. 3.Grupo de Nuevos Desarrollos Tecnológicos en Electroquímica: Sonoelectroquímica y Bioelectroquímica, Departamento de Química Física e Instituto de ElectroquímicaUniversidad de AlicanteAlicanteSpain

Personalised recommendations