Solar Energy

  • Ion Bostan
  • Adrian Gheorghe
  • Valeriu Dulgheru
  • Ion Sobor
  • Viorel Bostan
  • Anatolie Sochirean
Part of the Topics in Safety, Risk, Reliability and Quality book series (TSRQ, volume 19)


Designing a system for solar energy conversion into thermal energy or electricity is based on accurate assessment of the solar radiation in the given location and on the knowledge of solar radiation properties. The Sun is the closest star to the Earth, at the average distance of 1.5 × 1011m.


Solar Radiation Wind Turbine Solar Collector Global Solar Radiation Maximum Power Point Tracking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stöcker H (1999) Toute la physique. Dunod, Paris,1180 pGoogle Scholar
  2. 2.
    Messenger R, Ventre J (2004) Photovoltaic systems engineering, 2nd edn. CRC Press LLC, Boca Raton, 455 pGoogle Scholar
  3. 3.
  4. 4.
    Duffie JA, Beckman WA (1991) Solar engineering of thermal processes, 2nd edn. Wiley Interscience, New YorkGoogle Scholar
  5. 5.
    Thekaekara MP (1974) Data on incident solar energy. Supplement to the Proceedings of the 20th annual meeting of the Institute for Environmental Science. Pages 21–49, Washington, D.C., April 30 1974Google Scholar
  6. 6.
    Iqbal M (1983) An introduction to solar radiation. Academic, TorontoGoogle Scholar
  7. 7. Accessed 20 May 2005
  8. 8.
    Experience, prospects and recommendations to overcome market barriers of parabolic trough collector power plant technology status. Report on solar trough power plants. Sponsored by the German Federal Minister for Education, Science, Research and Technology under Contract No. 0329660. ISBN 3-9804901-0-6. Copyright 1996. Pilkington Solar International GmbHGoogle Scholar
  9. 9.
    Bougard J (1995) Conversion d’energie. Machines solaires. Faculte Politechnique de Mons, AGADIRGoogle Scholar
  10. 10.
    Hinrichs RA, Kleinbach M (2002) Energy: its use and environment, 3rd edn. Thomson Learning, Brooks/Cole, 590 pGoogle Scholar
  11. 11.
    Boyle G (2004) Renewable energy: power for a sustainable future. Oxford University Press, Oxford, 452 pGoogle Scholar
  12. 12.
    Twejdell JU (1990) Renewable energy sources (Trans from English). Energoatomizdat, Moscow, 392 cGoogle Scholar
  13. 13.
    Dumitraşcu Gh, Macri V, Stadoleanu O (1998) Solar energy use. Timpul, IaşiGoogle Scholar
  14. 14.
    Lorenzo E (2002) De Los Archivos Históricos De La Energía Solar. Las chimeneas solares: De una propuesta española en 1903 a la Central de Manzanares (pdf)Google Scholar
  15. 15.
    Günther H (1931) In hundert Jahren – Die künftige Energieversorgung der Welt. Kosmos, Gesellschaft der Naturfreunde, Franckh’sche Verlagshandlung, StuttgartGoogle Scholar
  16. 16.
    Lucier RE (1978) Utilization of solar energy. Patent no. 1,023,564 CA. Int.Cl. F03G6/04; F03G6/00Google Scholar
  17. 17.
    Haaf W, Friedrich K, Mayr G, Schlaich J (1983) Solar chimneys. Part 1: principle and construction of the pilot plant in Manzanares. Int J Sol Energ 2(1):3–20CrossRefGoogle Scholar
  18. 18.
    Haaf W (1984) Solar chimneys. Part II: preliminary test results from the Manzanares pilot plant. Int J Sol Energ 2(2):141–161CrossRefGoogle Scholar
  19. 19.
    Schlaich J, Schiel W (2001) Solar chimneys. Encyclopedia of physical science and technology, 3rd edn. Academic, London. ISBN 0-12-227410-5Google Scholar
  20. 20.
    Schlaich J, Bergermann R, Schiel W, Weinrebe G. Design of commercial solar updraft tower systems. Utilization of solar induced convective flows for power generation. Schlaich Bergermann und Partner (sbp gmbh). Stutgart, Germany. Retrieved 23.03.2011
  21. 21.
    Torre solar de 750 metros de altura en Ciudad Real (España). Green energy plan to use smaller solar tower, ABC, 2006-06-13Google Scholar
  22. 22.
    Schlaich J (1995) The solar chimney. Edition Axel Menges, StuttgartGoogle Scholar
  23. 23.
    Schlaich J, Schiel W, Friedrich K, Schwarz G, Wehowsky P, Meinecke W, Kiera M (1990) Abschlußbericht Aufwindkraftwerk, Übertragbarkeit der Ergebnisse von Manzanares auf größere Anlagen. MFTFörderkennzeichen 0324249D, StuttgartGoogle Scholar
  24. 24.
    Gannon AJ, Backström TW (2000) Solar chimney cycle analysis with system loss and solar collector. J Sol Energ Eng 122(3):133–137CrossRefGoogle Scholar
  25. 25.
    El-Haroun AA (2002) The effect of wind speed at the top of the tower on the performance and energy generated from thermosyphon solar turbine. Int J Sol Energ 22(1):9–18. doi: 10.1080/0142591021000003336 CrossRefGoogle Scholar
  26. 26.
    Weinrebe G (2000) Solar chimney simulation. In: Proceedings of the IEA SolarPACES task III simulation of solar thermal power systems workshop. Cologne, 28, 29 Sept 2000Google Scholar
  27. 27.
    Dos Santos Bernardes MA, Voß A, Weinrebe G (2003) Thermal and technical analyses of solar chimneys. Sol Energ 75:511–524CrossRefGoogle Scholar
  28. 28.
    Pretorius JP, Kröger DG (2006) Critical evaluation of solar chimney power plant performance. Sol Energ 80(5):535–544. doi: 10.1016/j.solener, 2005.04.001 DOI:dx.doi.orgCrossRefGoogle Scholar
  29. 29.
    Fickling D (2002) Real power from nothing but hot air. The Guardian, 19 Aug 2002Google Scholar
  30. 30.
    China invests in solar towers. Asia Times, 7 Oct 2004. Retrieved 9 July 2006Google Scholar
  31. 31.
    Padki MM, Sherif SA (1999) On a simple analytical model for solar chimneys. Int J Energ Res, 23, pp. 289–294 Google Scholar
  32. 32.
    Schlaich J, Bergermann R, Schiel W, Weinrebe G (2005) Design of commercial solar updraft tower systems–utilization of solar induced convective flows for power generation (PDF). J Sol Energ Eng 127(1):117–124CrossRefGoogle Scholar
  33. 33.
    Bilgen E, Rheault J (2005) Solar chimney power plants for high latitudes. Sol Energ 79(5):449–458. doi: 10.1016/j.solener, 2005.01.003 DOI: CrossRefGoogle Scholar
  34. 34.
    Lucier R (1981) System for solar heat conversion into electrical energy. Brevet No. 4275309 US. F03D1/04Google Scholar
  35. 35.
    Dai YJ, Huang HB, Wang RZ (2003) Case study of solar chimney power plants in Northwestern regions of China. Renew Energ 28(8):1295–1304. doi: 10.1016/S0960-1481(02)00227-6 CrossRefGoogle Scholar
  36. 36.
    Onyangoa FN, Ochieng RM (2006) The potential of solar chimney for application in rural areas of developing countries. Fuel 85: Issues 17–18, 2561–2566. doi: 10.1016/j.fuel.2006.04.029 CrossRefGoogle Scholar
  37. 37.
    Monohans solar tower project heart of oil industry could become site of renewable energy project. Scan Syst 19 July 2003
  38. 38.
    Gidrometeoizdat L (1990) Research and applied handbook on climate in the USSR. Series 3: Multiannual data. Leningrad: Gidrometeoizdat. Part 1–6, Vyp. 11, MSSRGoogle Scholar
  39. 39.
    Executive summary: assessment of parabolic trough and power tower solar technology cost and performance forecasts. Sargent & Lundy LLC Consulting Group Chicago, Illinois NREL Technical Monitor: H. Price. Prepared under Subcontract No. LAA-2-32458-01Google Scholar
  40. 40.
    Solar energy systems. Status report on solar trough power plants, 1996Google Scholar
  41. 41.
    Stoddard L, Abiecunas J, O’Connell R (2005) Economic, energy, and environmental benefits of concentrating solar power in California. May 2005–April 2006. Black & Veatch Overland Park, Kansas NREL Technical Monitor: M. Mehos. Prepared under Subcontract No. AEK-5-55036-01Google Scholar
  42. 42.
  43. 43.
    Bougard J, Benallou A (1998) Le solaire thermique au service du developpment durable. Sous la direction scientifique de: IEPF, QuebecGoogle Scholar
  44. 44.
    Frank Shuman's Solar Arabian Dream. Accessed 17 Aug 2005
  45. 45.
    Solar energy system design. Accessed 25 Mar 2012
  46. 46.
    Ruprecht A et al (2003) Strömungstechnische Gestaltung eines Aufwindkraftwerks (Fluid dynamic design of a solar updraft power plant). In: Proceedings of the internationales symposium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen. Bauhaus–University Weimar, Weimar, 10–12 June 2003Google Scholar
  47. 47.
    Concentrating solar power: energy from mirrors. DOE/GO-102001-1147, FS 128, Mar 2001Google Scholar
  48. 48.
    Solar two central receiver. Consultant report. California Energy Commission, 1999Google Scholar
  49. 49.
    Bostan I, Dulgheru V, Dicusară I. Solar unit with Stirling motor. Patent No. 3348MD. BOPI no. 10/2007Google Scholar
  50. 50.
    Bostan I, Dulgheru V, Nicu T, Ciupercă R. External combustion Engine. Patent No. 2679 MD. BOPI no. 1/2005Google Scholar
  51. 51.
  52. 52.
    Russell O (1946) Light sensitive device. Patent No. 2,402,662 USGoogle Scholar
  53. 53.
    Dones R, Frischknect R (1998) Life-cycle assessment of photovoltaic systems: results of Swiss studies on energy chains. Prog Photovolt Res Appl 6:117–125CrossRefGoogle Scholar
  54. 54.
    Alsema E (2000) Energy pay-back time and CO2 emissions of PV systems. Prog Photovolt Res Appl 8:17–25CrossRefGoogle Scholar
  55. 55.
    Systemes solaires. Le Journal des Énergies Renouvelabeles. Novembre–Decembre, No. 134, 1999; Mars–Avril, No. 136, 2000Google Scholar
  56. 56.
    Office for official publications of the European communities (1996) Photovoltaics in 2010. Vol. 1: current status and a strategy for European industrial and market development. Office for official publications of the European communities, LuxemburgGoogle Scholar
  57. 57.
    Rauschenbach HS (1980) The principles and technology of photovoltaic energy conversion. Litton Educational Publishing, New YorkGoogle Scholar
  58. 58.
    Markvart T (ed) (2000) Solar electricity, 2nd edn. UNESCO energy engineering series. John Wiley & Soons. Baffins Lane, Chichester, England, 280 p. ISBN 0-471-98853-7Google Scholar
  59. 59.
    Rauschenbach HS (1980) The principles and technology of photovoltaic energy conversion. Litton Educational Publishing, New YorkGoogle Scholar
  60. 60.
    Messenger R. Ventre J. (2004) Photovoltaic systems engineering. 2nd ed., CRC Pres LLC.Google Scholar
  61. 61. Accessed 11 Jan 2006
  62. 62.
    Bostan I, Vişa I, Dulgheru V, Dicusară I. Self-orientation paraboloidal solar unit (variants). Patent no. 3975 MD. BI no 3/2010Google Scholar
  63. 63.
    Palz W, Zibetta H (1991) Energy payback time of photovoltaic modules. Int J Sol Energ 10(3–4):211–216CrossRefGoogle Scholar
  64. 64.
    Chancelier L, Laurent E (1996) L’électricité photovoltaïque. Collection “Le point sur”. Gret, Ministère de la Coopération, 255 pGoogle Scholar
  65. 65.
    Rodot M, Benallou A (1998) Guide de l’énergie solaire: Electricité solaire thermique au service du développement rural. RIES, 172 pGoogle Scholar
  66. 66.
    Perlin J (2007) Late 1950s – saved by the space race (HTML). SOLAR EVOLUTION – the history of solar energy. The Rahus Institute. Retrieved 25 Feb 2007Google Scholar
  67. 67.
    NASA JPL publication: basics of space flight, chapter 11. Typical onboard systems, electrical power supply and distribution subsystems. (3 of 5) Accessed 25 Mar 2012
  68. 68.
    Gaddy EM (1996) Cost performance of multi-junction, gallium arsenide, and silicon solar cells on spacecraft. Photovoltaic specialists conference. Conference record of the twenty fifth IEEE. Washington, DC, 13–17 May 1996, pp 293–296Google Scholar
  69. 69.
    Bostan I, Dulgheru V, Dicusară I. Patent no. 2965 MD. Self-orientation solar unit. B.I. no. 2/2006Google Scholar
  70. 70.
    Gidrometeoizdat L (1966) Handbook on climate in the USSR. Vyp. 11, MSSR. Solar radiation, radiation balance and solar shiningGoogle Scholar
  71. 71.
    Von Backström TW (2003) Calculation of pressure and density in solar power plant chimneys. J Sol Energ Eng 125(1):127–129. doi: 10.1115/1.1530198 CrossRefGoogle Scholar
  72. 72.
    Systemes solaires. Le Journal des Énergies Renouvelabeles. Mai-Juin, no. 149, 2002Google Scholar
  73. 73.
    High performance photovoltaic project. Kickoff meeting. NREL, 18 Oct. Identifying critical pathways
  74. 74.
    Todos P, Sobor I, Ungureanu D, Chiciuc A, Pleşca M. Renewable energy: feasibility study. Ch.: Ministry of Ecology, Constructions and Territorial Development; UNDP Moldova, Chişinău, 2002, 158 p. ISBN 9975-9581-4-1Google Scholar
  75. 75.
    Sobor I, Kobîleaţchi N, Wahhab A (2001) Pump operating regime with electromagnetic vibrator with closed outled slide. In: International conference SIELMEN’01, vol III. Chişinău, 4–6 Oct 2001, pp 61–66. ISBN 9975-9638-8-9Google Scholar
  76. 76.
    Sobor I, Nucă I, Wahhab IA (2001) Mathematical model of the “Photovoltaic Generator–Inverter”. Electromagnetic pump. In: International conference SIELMEN’01, vol 1. Chişinău, 4–6 Oct 2001, pp 251–252. ISBN 9975-9638-6-2Google Scholar
  77. 77.
    Sobor I, Wahhab IA, Kobîleaţchi N (2001) Photovoltaic solar energy for small irrigation. In: Proceedings of the scientific conference “Efficiency increase of energy and water use in Moldovan agriculture”. Chişinău, 20–21 Sept 2001, pp 114–122. ISBN 9975-9645-4-0Google Scholar
  78. 78.
    Sobor I, Wahhab IA (2002) Pompes avec actionnement electromagnetique et niveau reduit de vibration. Buletinul Institutului Politehnic Iaşi, tomul XLVIII (LII), fasc. 5C, 2002. Electrotehnica, Energetica, Electronica, pp 85–92. ISNN 0258–9109Google Scholar
  79. 79.
    Sobor I, Kobîleaţki N, Gherţescu C, Wahhab IA (2003) Pumping photovoltaic system. International workshop “70th anniversary of the State Agrarian University of Moldova”. 7–8 Oct 2003, pp 152–155. ISBN 9975-9624-5-9Google Scholar
  80. 80.
    Sobor I, Gherţescu C (2003) Comparative analysis of drive characteristics and types of solar pumps. In: Proceedings of the 4th international conference on electromechanical and power systems, SIELMEN’03. Ch.: 26–27th Sept 2003, vol III, pp 193–196. ISBN 9975-9704-9-4Google Scholar
  81. 81.
    Sobor I, Kobîleaţkii N, Gherţescu C (2003) Simulation of dynamics and static regimes of solar pumps with electromagnetic vibrator. In: Proceedings of the 4th international conference on electromechanical and power systems, SIELMEN’03, vol I. Ch.: 26–27th Sept 2003, pp 43–46. ISBN 9975-9704-0-3Google Scholar
  82. 82.
    Sobor I, Kobîleaţkii N, Wahhab IA. Patent No.1907MD. Pump with vibrator, BOPI 04/2002Google Scholar
  83. 83.
    Sobor I, Kobileatkii N, Gherţescu C (2004) First photovoltaic system for small irrigation in the Republic of Moldova. Bull Polytech Inst Iaşi, vol L(LIV), Fasc. 5C. Electrotechnics, Energetics, Electronics, pp 1430–1435, Iaşi. ISNN 1223–8139Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2013

Authors and Affiliations

  • Ion Bostan
    • 1
  • Adrian Gheorghe
    • 2
  • Valeriu Dulgheru
    • 3
  • Ion Sobor
    • 1
  • Viorel Bostan
    • 1
  • Anatolie Sochirean
    • 1
  1. 1.Technical University of MoldovaChişinăuRepublic of Moldova
  2. 2.Engineering Management and Systems EngineeringOld Dominion UniversityNorfolkUSA
  3. 3.Mechanical EngineeringTechnical University of MoldovaChişinăuRepublic of Moldova

Personalised recommendations