Skip to main content

Biophysics of Cadherin Adhesion

Part of the Subcellular Biochemistry book series (SCBI,volume 60)

Abstract

Since the identification of cadherins and the publication of the first crystal structures, the mechanism of cadherin adhesion, and the underlying structural basis have been studied with a number of different experimental techniques, different classical cadherin subtypes, and cadherin fragments. Earlier studies based on biophysical measurements and structure determinations resulted in seemingly contradictory findings regarding cadherin adhesion. However, recent experimental data increasingly reveal parallels between structures, solution binding data, and adhesion-based biophysical measurements that are beginning to both reconcile apparent differences and generate a more comprehensive model of cadherin-mediated cell adhesion. This chapter summarizes the functional, structural, and biophysical findings relevant to cadherin junction assembly and adhesion. We emphasize emerging parallels between findings obtained with different experimental approaches. Although none of the current models accounts for all of the available experimental and structural data, this chapter discusses possible origins of apparent discrepancies, highlights remaining gaps in current knowledge, and proposes challenges for further study.

Keywords

  • Rupture Force
  • Classical Cadherins
  • Catch Bond
  • Sedimentation Velocity Experiment
  • Calcium Calcium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-4186-7_4
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-4186-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4

References

  • Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proc Natl Acad Sci USA 97:4005–4010

    PubMed  CAS  CrossRef  Google Scholar 

  • Bayas MV, Leung A, Evans E, Leckband D (2006) Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys J 90:1385–1395

    PubMed  CAS  CrossRef  Google Scholar 

  • Bayas MV, Kearney A, Avramovic A, van der Merwe PA, Leckband DE (2007) Impact of salt bridges on the equilibrium binding and adhesion of human CD2 and CD58. J Biol Chem 282:5589–5596

    PubMed  CAS  CrossRef  Google Scholar 

  • Becker KF, Kremmer E, Eulitz M, Becker I, Handschuh G, Schuhmacher C, Muller W, Gabbert HE, Ochiai A, Hirohashi S, Hofler H (1999) Analysis of E-cadherin in diffuse-type gastric cancer using a mutation-specific monoclonal antibody. Am J Pathol 155:1803–1809

    PubMed  CAS  CrossRef  Google Scholar 

  • Berx G, Nollet F, van Roy F (1998) Dysregulation of the E-cadherin/catenin complex by irreversible mutations in human carcinomas. Cell Adhes Commun 6:171–184

    PubMed  CAS  CrossRef  Google Scholar 

  • Bibert S, Jaquinod M, Concord E, Ebel C, Hewat E, Vanbelle C, Legrand P, Weidenhaupt M, Vernet T, Gulino-Debrac D (2002) Synergy between extracellular modules of vascular endothelial cadherin promotes homotypic hexameric interactions. J Biol Chem 277:12790–12801

    PubMed  CAS  CrossRef  Google Scholar 

  • Bixby JL, Zhang R (1990) Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J Cell Biol 110:1253–1260

    PubMed  CAS  CrossRef  Google Scholar 

  • Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23:7918–7927

    PubMed  CAS  CrossRef  Google Scholar 

  • Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313

    PubMed  CAS  CrossRef  Google Scholar 

  • Brasch J, Harrison OJ, Ahlsen G, Carnally SM, Henderson RM, Honig B, Shapiro L (2011) Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin. J Mol Biol 408:57–73

    PubMed  CAS  CrossRef  Google Scholar 

  • Brieher WM, Yap AS, Gumbiner BM (1996) Lateral dimerization is required for the homophilic binding activity of C-cadherin. J Cell Biol 135:487–496

    PubMed  CAS  CrossRef  Google Scholar 

  • Chappuis-Flament S, Wong E, Hicks LD, Kay CM, Gumbiner BM (2001) Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J Cell Biol 154:231–243

    PubMed  CAS  CrossRef  Google Scholar 

  • Chen W, Zarnitsyna VI, Sarangapani KK, Huang J, Zhu C (2008) Measuring receptor-ligand binding kinetics on cell surfaces: from adhesion frequency to thermal fluctuation methods. Cell Mol Bioeng 1:276–288

    PubMed  CAS  CrossRef  Google Scholar 

  • Chesla SE, Selvaraj P, Zhu C (1998) Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys J 75:1553–1572

    PubMed  CAS  CrossRef  Google Scholar 

  • Chesla SE, Li P, Nagarajan S, Selvaraj P, Zhu C (2000) The membrane anchor influences ligand binding two-dimensional kinetic rates and three-dimensional affinity of FcgammaRIII (CD16). J Biol Chem 275:10235–10246

    PubMed  CAS  CrossRef  Google Scholar 

  • Cheung MS, Thirumalai D (2007) Effects of crowding and confinement on the structures of the transition state ensemble in proteins. J Phys Chem B 111:8250–8257

    PubMed  CAS  CrossRef  Google Scholar 

  • Cheung MS, Klimov D, Thirumalai D (2005) Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci USA 102:4753–4758

    PubMed  CAS  CrossRef  Google Scholar 

  • Chien YH, Jiang N, Li F, Zhang F, Zhu C, Leckband D (2008) Two stage cadherin kinetics require multiple extracellular domains but not the cytoplasmic region. J Biol Chem 283:1848–1856

    PubMed  CAS  CrossRef  Google Scholar 

  • Chtcheglova, LA, Wildling L, Waschke J, Drenckhahn D, Hinterdorfer P (2010) AFM functional imaging on vascular endothelial cells. J Mol Recogn 23:589–596

    CAS  CrossRef  Google Scholar 

  • Ciatto C, Bahna F, Zampieri N, VanSteenhouse HC, Katsamba PS, Ahlsen G, Harrison OJ, Brasch J, Jin X, Posy S, Vendome J, Ranscht B, Jessell TM, Honig B, Shapiro L (2010) T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 17:339–347

    PubMed  CAS  CrossRef  Google Scholar 

  • Dhar A, Samiotakis A, Ebbinghaus S, Nienhaus L, Homouz D, Gruebele M, Cheung MS (2010) Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. Proc Natl Acad Sci USA 107:17586–17591

    PubMed  CAS  CrossRef  Google Scholar 

  • Dudko OK (2009) Single-molecule mechanics: new insights from the escape-over-a-barrier problem. Proc Natl Acad Sci USA 106:8795–8796

    PubMed  CAS  CrossRef  Google Scholar 

  • Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101

    PubMed  CrossRef  CAS  Google Scholar 

  • Dudko OK, Mathe J, Szabo A, Meller A, Hummer G (2007) Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys J 92:4188–4195

    PubMed  CAS  CrossRef  Google Scholar 

  • Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 105:15755–15760

    PubMed  CAS  CrossRef  Google Scholar 

  • du Roure O, Buguin A, Feracci H, Silberzan P (2006) Homophilic interactions between cadherin fragments at the single molecule level: an AFM study. Langmuir 22:4680–4684

    PubMed  CAS  CrossRef  Google Scholar 

  • Evans E (1998) Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss:1–16

    Google Scholar 

  • Evans E (2001) Probing the relation between force—lifetime—and chemistry in single molecular bonds. Ann Rev Biophys Biomol Struct 30:105–128

    CAS  CrossRef  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    PubMed  CAS  CrossRef  Google Scholar 

  • Evans EA, Calderwood DA (2007) Forces and bond dynamics in cell adhesion. Science 316:1148–1153

    PubMed  CAS  CrossRef  Google Scholar 

  • Fuchs M, Hutzler P, Handschuh G, Hermannstadter C, Brunner I, Hofler H, Luber B (2004) Dynamics of cell adhesion and motility in living cells is altered by a single amino acid change in E-cadherin fused to enhanced green fluorescent protein. Cell Motil Cytoskeleton 59:50–61

    PubMed  CAS  CrossRef  Google Scholar 

  • Gavard J, Lambert M, Grosheva I, Marthiens V, Irinopoulou T, Riou JF, Bershadsky A, Mege RM (2004) Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J Cell Sci 117:257–270

    PubMed  CAS  CrossRef  Google Scholar 

  • Geng F, Shi BZ, Yuan YF, Wu XZ (2004) The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell Res 14:423–433

    PubMed  CAS  CrossRef  Google Scholar 

  • Guo HB, Johnson H, Randolph M, Pierce M (2009) Regulation of homotypic cell-cell adhesion by branched N-glycosylation of N-cadherin extracellular EC2 and EC3 domains. J Biol Chem 284:34986–34997

    PubMed  CAS  CrossRef  Google Scholar 

  • Handschuh G, Candidus S, Luber B, Reich U, Schott C, Oswald S, Becke H, Hutzler P, Birchmeier W, Hofler H, Becker KF (1999) Tumour-associated E-cadherin mutations alter cellular morphology, decrease cellular adhesion and increase cellular motility. Oncogene 18:4301–4312

    PubMed  CAS  CrossRef  Google Scholar 

  • Handschuh G, Luber B, Hutzler P, Hofler H, Becker KF (2001) Single amino acid substitutions in conserved extracellular domains of E-cadherin differ in their functional consequences. J Mol Biol 314:445–454

    PubMed  CAS  CrossRef  Google Scholar 

  • Harrison OJ, Corps EM, Berge T, Kilshaw PJ (2005) The mechanism of cell adhesion by classical cadherins: the role of domain 1. J Cell Sci 118:711–721

    PubMed  CAS  CrossRef  Google Scholar 

  • Harrison OJ, Bahna F, Katsamba PS, Jin X, Brasch J, Vendome J, Ahlsen G, Carroll KJ, Price SR, Honig B, Shapiro L (2010) Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17:348–357

    PubMed  CAS  CrossRef  Google Scholar 

  • Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J, Wu Y, Vendome J, Felsovalyi K, Hampton CM, Troyanovsky RB, Ben-Shaul A, Frank J, Troyanovsky SM, Shapiro L, Honig B (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–256

    PubMed  CAS  CrossRef  Google Scholar 

  • Haussinger D, Ahrens T, Sass HJ, Pertz O, Engel J, Grzesiek S (2002) Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions. J Mol Biol 324:823–839

    PubMed  CAS  CrossRef  Google Scholar 

  • Haussinger D, Ahrens T, Aberle T, Engel J, Stetefeld J, Grzesiek S (2004) Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J 23:1699–1708

    PubMed  CrossRef  CAS  Google Scholar 

  • He W, Cowin P, Stokes DL (2003) Untangling desmosomal knots with electron tomography. Science 302:109–113

    PubMed  CAS  CrossRef  Google Scholar 

  • Hewat EA, Durmort C, Jacquamet L, Concord E, Gulino-Debrac D (2007) Architecture of the VE-cadherin hexamer. J Mol Biol 365:744–751

    PubMed  CAS  CrossRef  Google Scholar 

  • Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    PubMed  CAS  CrossRef  Google Scholar 

  • Hong S, Troyanovsky RB, Troyanovsky SM (2011) Cadherin exits the junction by switching its adhesive bond. J Cell Biol 192:1073–1083

    PubMed  CAS  CrossRef  Google Scholar 

  • Huang J, Chen J, Chesla SE, Yago T, Mehta P, McEver RP, Zhu C, Long M (2004) Quantifying the effects of molecular orientation and length on two-dimensional receptor-ligand binding kinetics. J Biol Chem 279:44915–44923

    PubMed  CAS  CrossRef  Google Scholar 

  • Huang J, Edwards LJ, Evavold BD, Zhu C (2007) Kinetics of MHC-CD8 interaction at the T cell membrane. J Immunol 179:7653–7662

    PubMed  CAS  Google Scholar 

  • Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N, Evavold BD, Zhu C (2010) The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464:932–936

    PubMed  CAS  CrossRef  Google Scholar 

  • Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    PubMed  CAS  CrossRef  Google Scholar 

  • Israelachvili J (1992) Adhesion forces between surfaces in liquids and condensable vapours. Surface Sci Rep 14:110–159

    CrossRef  Google Scholar 

  • Israelachvili JN, Adams GE (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J Chem Soc Faraday Trans I 75:975–1001

    CrossRef  Google Scholar 

  • Jamal BT, Nita-Lazar M, Gao Z, Amin B, Walker J, Kukuruzinska MA (2009) N-glycosylation status of E-cadherin controls cytoskeletal dynamics through the organization of distinct beta-catenin- and gamma-catenin-containing AJs. Cell Health Cytoskelet 2009:67–80

    PubMed  Google Scholar 

  • Johnson CP, Fujimoto I, Perrin-Tricaud C, Rutishauser U, Leckband D (2004) Mechanism of homophilic adhesion by the neural cell adhesion molecule: use of multiple domains and flexibility. Proc Natl Acad Sci USA 101:6963–6968

    PubMed  CAS  CrossRef  Google Scholar 

  • Johnson CP, Fragneto G, Konovalov O, Dubosclard V, Legrand JF, Leckband DE (2005a) Structural studies of the neural-cell-adhesion molecule by X-ray and neutron reflectivity. Biochemistry 44:546–554

    CAS  CrossRef  Google Scholar 

  • Johnson CP, Fujimoto I, Rutishauser U, Leckband DE (2005b) Direct evidence that neural cell adhesion molecule (NCAM) polysialylation increases intermembrane repulsion and abrogates adhesion. J Biol Chem 280:137–145

    CAS  Google Scholar 

  • Katsamba P, Carroll K, Ahlsen G, Bahna F, Vendome J, Posy S, Rajebhosale M, Price S, Jessell TM, Ben-Shaul A, Shapiro L, Honig BH (2009) Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc Natl Acad Sci USA 106:11594–11599

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim YJ, Johnson KR, Wheelock MJ (2005) N-cadherin-mediated cell motility requires cis dimers. Cell Commun Adhes 12:23–39

    PubMed  CAS  CrossRef  Google Scholar 

  • Kitagawa M, Natori M, Murase S, Hirano S, Taketani S, Suzuki ST (2000) Mutation analysis of cadherin-4 reveals amino acid residues of EC1 important for the structure and function. Biochem Biophys Res Commun 271:358–363

    PubMed  CAS  CrossRef  Google Scholar 

  • Klingelhofer J, Laur OY, Troyanovsky RB, Troyanovsky SM (2002) Dynamic interplay between adhesive and lateral E-cadherin dimers. Mol Cell Biol 22:7449–7458

    PubMed  CAS  CrossRef  Google Scholar 

  • Koch AW, Pokutta S, Lustig A, Engel J (1997) Calcium binding and homoassociation of E-cadherin domains. Biochemistry 36:7697–7705

    PubMed  CAS  CrossRef  Google Scholar 

  • Koch AW, Bozic D, Pertz O, Engel J (1999) Homophilic adhesion by cadherins. Curr Opin Struct Biol 9:275–281

    PubMed  CAS  CrossRef  Google Scholar 

  • Lambert O, Taveau JC, Him JL, Al Kurdi R, Gulino-Debrac D, Brisson A (2005) The basic framework of VE-cadherin junctions revealed by cryo-EM. J Mol Biol 346:1193–1196

    PubMed  CAS  CrossRef  Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    PubMed  CAS  CrossRef  Google Scholar 

  • Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26

    PubMed  CAS  CrossRef  Google Scholar 

  • Leckband D, Israelachvili J (2001) Intermolecular forces in biology. Q Rev Biophys 34:105–267

    PubMed  CAS  CrossRef  Google Scholar 

  • Leckband D, Prakasam A (2006) Mechanism and dynamics of cadherin adhesion. Annu Rev Biomed Eng 8:259–287

    PubMed  CAS  CrossRef  Google Scholar 

  • Leckband D, Sivasankar S (2000) Mechanism of homophilic cadherin adhesion. Curr Opin Cell Biol 12:587–592

    PubMed  CAS  CrossRef  Google Scholar 

  • Leckband DE, Schmitt FJ, Israelachvili JN, Knoll W (1994) Direct force measurements of specific and nonspecific protein interactions. Biochemistry 33:4611–4624

    PubMed  CAS  CrossRef  Google Scholar 

  • Leckband D, Muller W, Schmitt FJ, Ringsdorf H (1995a) Molecular mechanisms determining the strength of receptor-mediated intermembrane adhesion. Biophys J. 69:1162–1169

    CAS  CrossRef  Google Scholar 

  • Leckband DE, Kuhl T, Wang HK, Herron J, Muller W, Ringsdorf H (1995b). 4-4-20 anti-fluorescyl IgG Fab’ recognition of membrane bound hapten: direct evidence for the role of protein and interfacial structure. Biochemistry 34:11467–11478

    CAS  CrossRef  Google Scholar 

  • Leckband DE, Menon S, Rosenberg K, Graham SA, Taylor ME, Drickamer K (2011) Geometry and adhesion of extracellular domains of DC-SIGNR neck length variants analyzed by force-distance measurements. Biochemistry 50:6125–6132

    PubMed  CAS  CrossRef  Google Scholar 

  • Liwosz A, Lei T, Kukuruzinska MA (2006) N-glycosylation affects the molecular organization and stability of E-cadherin junctions. J Biol Chem 281:23138–23149

    PubMed  CAS  CrossRef  Google Scholar 

  • Long M, Zhao H, Huang KS, Zhu C (2001) Kinetic measurements of cell surface E-selectin/carbohydrate ligand interactions. Annals Biomed Eng 29:935–946

    CAS  CrossRef  Google Scholar 

  • Luber B, Candidus S, Handschuh G, Mentele E, Hutzler P, Feller S, Voss J, Hofler H, Becker KF (2000) Tumor-derived mutated E-cadherin influences beta-catenin localization and increases susceptibility to actin cytoskeletal changes induced by pervanadate. Cell Adhes Commun. 7:391–408

    PubMed  CAS  CrossRef  Google Scholar 

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    PubMed  CAS  CrossRef  Google Scholar 

  • Menon S, Rosenberg K, Graham SA, Ward EM, Taylor ME, Drickamer K, Leckband DE (2009) Binding-site geometry and flexibility in DC-SIGN demonstrated with surface force measurements. Proc Natl Acad Sci USA 106:11524–11529

    PubMed  CAS  CrossRef  Google Scholar 

  • Miloushev VZ, Bahna F, Ciatto C, Ahlsen G, Honig B, Shapiro L, Palmer AG 3rd (2008) Dynamic properties of a type II cadherin adhesive domain: implications for the mechanism of strand-swapping of classical cadherins. Structure 16:1195–1205

    PubMed  CAS  CrossRef  Google Scholar 

  • Nagar B, Overduin M, Ikura M, Rini JM (1996) Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380:360–364

    PubMed  CAS  CrossRef  Google Scholar 

  • Nita-Lazar M, Rebustini I, Walker J, Kukuruzinska MA (2010) Hypoglycosylated E-cadherin promotes the assembly of tight junctions through the recruitment of PP2A to adherens junctions. Exp Cell Res 316:1871–1884

    PubMed  CAS  CrossRef  Google Scholar 

  • Nose A, Nagafuchi A, Takeichi M (1988) Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54:993–1001

    PubMed  CAS  CrossRef  Google Scholar 

  • Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155

    PubMed  CAS  CrossRef  Google Scholar 

  • Ozawa M, Hoschutzky H, Herrenknecht K, Kemler R (1990) A possible new adhesive site in the cell-adhesion molecule uvomorulin. Mech Dev 33:49–56

    PubMed  CAS  CrossRef  Google Scholar 

  • Perret E, Leung A, Feracci H, Evans E (2004) Trans-bonded pairs of E-cadherin exhibit a remarkable hierarchy of mechanical strengths. Proc Natl Acad Sci USA 101:16472–16477

    PubMed  CAS  CrossRef  Google Scholar 

  • Pertsinidis A, Zhang Y, Chu S (2010) Subnanometre single-molecule localization, registration and distance measurements. Nature 466:647–651

    PubMed  CAS  CrossRef  Google Scholar 

  • Pertz O, Bozic D, Koch AW, Fauser C, Brancaccio A, Engel J (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J 18:1738–1747

    PubMed  CAS  CrossRef  Google Scholar 

  • Pinho SS, Osorio H, Nita-Lazar M, Gomes J, Lopes C, Gartner F, Reis CA (2009) Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochim Biophys Res Comm 379:1091–1096

    CAS  CrossRef  Google Scholar 

  • Pinho SS, Seruca R, Gartner F, Yamaguchi Y, Gu J, Taniguchi N, Reis CA (2011) Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci 68:1011–1020

    PubMed  CAS  CrossRef  Google Scholar 

  • Piper JW, Swerlick RA, Zhu C (1998) Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophys J 74:492–513

    PubMed  CAS  CrossRef  Google Scholar 

  • Pokutta S, Herrenknecht K, Kemler R, Engel J (1994) Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem 223:1019–1026

    PubMed  CAS  CrossRef  Google Scholar 

  • Prakasam A, Chien YH, Maruthamuthu V, Leckband DE (2006a) Calcium site mutations in cadherin: impact on adhesion and evidence of cooperativity. Biochemistry 45:6930–6939

    CAS  CrossRef  Google Scholar 

  • Prakasam AK, Maruthamuthu V, Leckband DE (2006b) Similarities between heterophilic and homophilic cadherin adhesion. Proc Natl Acad Sci USA 103:15434–15439

    CAS  CrossRef  Google Scholar 

  • Prasad A, Pedigo S (2005) Calcium-dependent stability studies of domains 1 and 2 of epithelial cadherin. Biochemistry 44:13692–13701

    PubMed  CAS  CrossRef  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nature Methods 5:507–516

    PubMed  CAS  CrossRef  Google Scholar 

  • Scott JA, Shewan AM, den Elzen NR, Loureiro JJ, Gertler FB, Yap AS (2006) Ena/VASP proteins can regulate distinct modes of actin organization at cadherin-adhesive contacts. Mol Biol Cell. 17:1085–1095

    PubMed  CAS  CrossRef  Google Scholar 

  • Shan W, Yagita Y, Wang Z, Koch A, Fex Svenningsen A, Gruzglin E, Pedraza L, Colman DR (2004) The minimal essential unit for cadherin-mediated intercellular adhesion comprises extracellular domains 1 and 2. J Biol Chem 279:55914–55923

    PubMed  CAS  CrossRef  Google Scholar 

  • Shi Q, Chien YH, Leckband D (2008) Biophysical properties of cadherin bonds do not predict cell sorting. J Biol Chem 283:28454–28463

    PubMed  CAS  CrossRef  Google Scholar 

  • Shi Q, Maruthamuthu V, Leckband D (2010) Allosteric cross-talk between cadherin ectodomains. Biophys J 99:95–104

    PubMed  CAS  CrossRef  Google Scholar 

  • Sivasankar S, Subramaniam S, Leckband D (1998) Direct molecular level measurements of the electrostatic properties of a protein surface. Proc Natl Acad Sci USA 95:12961–12966

    PubMed  CAS  CrossRef  Google Scholar 

  • Sivasankar S, Gumbiner B, Leckband D (2001) Direct measurements of multiple adhesive alignments and unbinding trajectories between cadherin extracellular domains. Biophys J 80:1758–1768

    PubMed  CAS  CrossRef  Google Scholar 

  • Sivasankar S, Zhang Y, Nelson WJ, Chu S (2009) Characterizing the initial encounter complex in cadherin adhesion. Structure 17:1075–1081

    PubMed  CAS  CrossRef  Google Scholar 

  • Smutney M, Cox H, Leerberg J, Conti M, Ferguson C, Hamilton N, Parton R, Adeslstein R, Yap A (2010) Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12:696–702

    CrossRef  CAS  Google Scholar 

  • Sotomayor M, Schulten K (2008) The allosteric role of the Ca2+ switch in adhesion and elasticity of C-cadherin. Biophys J 94:4621–4633

    PubMed  CAS  CrossRef  Google Scholar 

  • Suzuki Y, Dudko OK (2010) Single-molecule rupture dynamics on multidimensional landscapes. Phys Rev Lett 104:048101

    PubMed  CrossRef  CAS  Google Scholar 

  • Takeda H, Shimoyama Y, Nagafuchi A, Hirohashi S (1999) E-cadherin functions as a cis-dimer at the cell-cell adhesive interface in vivo. Nat Struct Biol 6:310–312

    PubMed  CAS  CrossRef  Google Scholar 

  • Tamura K, Shan WS, Hendrickson WA, Colman DR, Shapiro L (1998) Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20:1153–1163

    PubMed  CAS  CrossRef  Google Scholar 

  • Taveau JC, Dubois M, Le Bihan O, Trepout S, Almagro S, Hewat E, Durmort C, Heyraud S, Gulino-Debrac D, Lambert O (2008) Structure of artificial and natural VE-cadherin-based adherens junctions. Biochem Soc Trans 36:189–193

    PubMed  CAS  CrossRef  Google Scholar 

  • Thomas W (2008) Catch bonds in adhesion. Annu Rev Biomed Eng 10:39–57

    PubMed  CAS  CrossRef  Google Scholar 

  • Thomas WE (2009) Mechanochemistry of receptor-ligand bonds. Curr Opin Struct Biol 19:50–55

    PubMed  CAS  CrossRef  Google Scholar 

  • Tomschy A, Fauser C, Landwehr R, Engel J (1996) Homophilic adhesion of E-cadherin occurs by a co-operative two-step interaction of N-terminal domains. EMBO J 15:3507–3514

    PubMed  CAS  Google Scholar 

  • Troyanovsky RB, Sokolov E, Troyanovsky SM (2003) Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol 23:7965–7972

    PubMed  CAS  CrossRef  Google Scholar 

  • Tsukasaki Y, Kitamura K, Shimizu K, Iwane AH, Takai Y, Yanagida T (2007) Role of multiple bonds between the single cell adhesion molecules, nectin and cadherin, revealed by high sensitive force measurements. J Mol Biol 367:996–1006

    PubMed  CAS  CrossRef  Google Scholar 

  • Vendome J, Posy S, Jin X, Bahna F, Ahlsen G, Shapiro L, Honig B (2011) Molecular design principles underlying beta-strand swapping in the adhesive dimerization of cadherins. Nat Struct Mol Biol 18:693–700

    PubMed  CAS  CrossRef  Google Scholar 

  • Vunnam N, Pedigo S (2011a) Prolines in betaA-sheet of neural cadherin act as a switch to control the dynamics of the equilibrium between monomer and dimer. Biochemistry 50:6959–6965

    CAS  CrossRef  Google Scholar 

  • Vunnam N, Pedigo S (2011b) Sequential binding of calcium leads to dimerization in neural cadherin. Biochemistry 50:2973–2982

    CAS  CrossRef  Google Scholar 

  • Williams TE, Nagarajan S, Selvaraj P, Zhu C (2001) Quantifying the impact of membrane microtopology on effective two-dimensional affinity. J Biol Chem 276:13283–13288

    PubMed  CAS  CrossRef  Google Scholar 

  • Wu Y, Jin X, Harrison O, Shapiro L, Honig BH, Ben-Shaul A (2010) Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proc Natl Acad Sci USA 107:17592–17597

    PubMed  CAS  CrossRef  Google Scholar 

  • Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475:510–513

    PubMed  CAS  CrossRef  Google Scholar 

  • Yeung C, Purves T, Kloss AA, Kuhl TL, Sligar S, Leckband D (1999) Cytochrome c recognition of immobilized, orientational variants of cytochrome b5:  direct force and equilibrium binding measurements. Langmuir 15:6829–6836

    CAS  CrossRef  Google Scholar 

  • Zhang F, Marcus WD, Goyal NH, Selvaraj P, Springer TA, Zhu C (2005) Two-dimensional kinetics regulation of alphaLbeta2-ICAM-1 interaction by conformational changes of the alphaL-inserted domain. J Biol Chem 280:42207–42218

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhang Y, Sivasankar S, Nelson WJ, Chu S (2009) Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci USA 106:109–114

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhao H, Liang Y, Xu Z, Wang L, Zhou F, Li Z, Jin J, Yang Y, Fang Z, Hu Y, Zhang L, Su J, Zha X (2008a) N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J Cell Biochem 104:162–175

    CAS  CrossRef  Google Scholar 

  • Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, Gu J, Taniguchi N (2008b) Branched N-glycans regulate the biological functions of integrins and cadherins. Febs J 275:1939–1948

    CAS  CrossRef  Google Scholar 

  • Zhong Y, Brieher WM, Gumbiner BM (1999) Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J Cell Biol 144:351–359

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhu B, Davies EA, van der Merwe PA, Calvert T, Leckband DE (2002) Direct measurements of heterotypic adhesion between the cell surface proteins CD2 and CD48. Biochemistry 41:12163–12170

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhu B, Chappuis-Flament S, Wong E, Jensen IE, Gumbiner BM, Leckband D (2003) Functional analysis of the structural basis of homophilic cadherin adhesion. Biophys J 84:4033–4042

    PubMed  CAS  CrossRef  Google Scholar 

  • Zhu C, Yago T, Lou J, Zarnitsyna VI, McEver RP (2008) Mechanisms for flow-enhanced cell adhesion. Ann Biomed Eng 36:604–621

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

DEL was supported by NSF CBET 0853705 and by NIH R21 HD059002. SS was supported by the Basil O’Connor Starter Scholar Award from the March of Dimes Foundation (#5-FY10-51).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Leckband .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leckband, D., Sivasankar, S. (2012). Biophysics of Cadherin Adhesion. In: Harris, T. (eds) Adherens Junctions: from Molecular Mechanisms to Tissue Development and Disease. Subcellular Biochemistry, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4186-7_4

Download citation