Skip to main content

Separability and Tight Enclosure of Point Sets

  • Chapter

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 2))

Abstract

In this chapter we focus on the separation and enclosure of finite sets of points. When a surface separates or encloses a point set as tightly as possible, it will touch the set in a small number of points. The results in this chapter center on how the surfaces touch the set, and on the side of a surface at which a point lies. The subject is closely related to theory of oriented matroids, where oriented matroids are used to describe hyperplane arrangements, but there are some differences in focus, as well. Oriented matroids are very useful to prove that an abstract configuration of lines and points can or cannot be realized in real space. In digital geometry, however, the realization is given, for example, as a set of edge points in a digital image. The emphasis is on finding models that explain how the digitized points and lines could arise. We give a general overview of the use of preimages (or domains) and elemental subsets in digital geometry and we also present some new results on the relation between elemental subsets and separability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, S., Snavely, N., Seitz, S.M.: Fast algorithms for l infinity problems in multiview geometry. In: CVPR. IEEE Comput. Soc., Los Alamitos (2008)

    Google Scholar 

  2. Anderson, T.A., Kim, C.E.: Representation of digital line segments and their preimages. Comput. Vis. Graph. Image Process. 30(3), 279–288 (1985)

    Article  MATH  Google Scholar 

  3. Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graph. Models Image Process. 59(5), 302–309 (1997)

    Article  Google Scholar 

  4. Andres, E., Jacob, M.-A.: The discrete analytical hyperspheres. IEEE Trans. Vis. Comput. Graph. 3(1), 75–86 (1997)

    Article  Google Scholar 

  5. Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-Rennesson, I., et al. (eds.) Discrete Geometry for Computer Imagery. LNCS, vol. 6607, pp. 235–246. Springer, Berlin (2011)

    Chapter  Google Scholar 

  6. Bjorner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented Matroids. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  7. Bronsted, A.: An Introduction to Convex Polytopes. Springer, Berlin (1983)

    Book  Google Scholar 

  8. Coeurjolly, D., Gerard, Y., Reveilles, J.-P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Appl. Math. 139, 31–50 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damaschke, P.: The linear time recognition of digital arcs. Pattern Recognit. Lett. 16, 543–548 (1995)

    Article  MATH  Google Scholar 

  10. Dorst, L., Smeulders, A.: Discrete representation of straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 6, 450–462 (1984)

    Article  MATH  Google Scholar 

  11. Fisk, S.: Separating point sets by circles, and the recognition of digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 8(4), 554–556 (1986)

    Article  Google Scholar 

  12. Gérard, Y., Coeurjolly, D., Feschet, F.: Gift-wrapping based preimage computation algorithm. Pattern Recognit. 42(10), 2255–2264 (2009)

    Article  MATH  Google Scholar 

  13. Gérard, Y., Provot, L., Feschet, F.: Introduction to digital level layers. In: Debled-Rennesson, I., et al. (eds.) Discrete Geometry for Computer Imagery. LNCS, vol. 6607, pp. 83–94. Springer, Berlin (2011)

    Chapter  Google Scholar 

  14. Grünbaum, B.: Polytopes, graphs, and complexes. Bull. Am. Math. Soc. 76, 1131–1201 (1970)

    Article  MATH  Google Scholar 

  15. Grünbaum, B.: Convex Polytopes, vol. 221. Springer, Berlin (2003)

    Book  Google Scholar 

  16. Kim, C.E.: Digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 6, 372–374 (1984)

    Article  MATH  Google Scholar 

  17. Kim, C.E.: Three-dimensional digital planes. IEEE Trans. Pattern Anal. Mach. Intell. 6, 639–645 (1984)

    Article  MATH  Google Scholar 

  18. Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In: STOC, pp. 117–124. ACM, New York (1984)

    Google Scholar 

  19. Koraraju, S.R., Meggido, N., O’Rourke, J.: Computing circular separability. Discrete Combin. Geom. 1, 105–113 (1986)

    Article  Google Scholar 

  20. Lee, H., Seo, Y., Lee, S.W.: Removing outliers by minimizing the sum of infeasibilities. Image Vis. Comput. 28(6), 881–889 (2010)

    Article  Google Scholar 

  21. Provot, L., Gérard, Y.: Recognition of digital hyperplanes and level layers with forbidden points. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K., Korutcheva, E. (eds.) Combinatorial Image Analysis. LNCS, vol. 6636, pp. 144–156. Springer, Berlin (2011)

    Chapter  Google Scholar 

  22. Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Handbook of Discrete and Computational Geometry, pp. 111–132. CRC Press, Boca Raton (1997)

    Google Scholar 

  23. Rosenfeld, A.: Digital straight line segments. IEEE Trans. Comput. 23, 1264–1269 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Roussillon, T., Tougne, L., Sivignon, I.: On three constrained versions of the digital circular arc recognition problem. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) Discrete Geometry for Computer Imagery. LNCS, vol. 5810, pp. 34–45. Springer, Berlin (2009)

    Chapter  Google Scholar 

  25. Seo, Y., Lee, H., Lee, S.W.: Outlier removal by convex optimization for l-infinity approaches. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT. LNCS, vol. 5414, pp. 203–214. Springer, Berlin (2009)

    Google Scholar 

  26. Stromberg, A.: Computing the exact least median of squares estimate and stability diagnostics in multiple linear regression. SIAM J. Sci. Comput. 14, 1289–1299 (1993)

    Article  MATH  Google Scholar 

  27. Veelaert, P.: On the flatness of digital hyperplanes. J. Math. Imaging Vis. 3, 205–221 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Veelaert, P.: Constructive fitting and extraction of geometric primitives. Graph. Models Image Process. 59(4), 233–251 (1997)

    Article  Google Scholar 

  29. Veelaert, P.: Distance between separating circles and points. In: Debled-Rennesson, I., et al. (eds.) Discrete Geometry for Computer Imagery. LNCS, vol. 6607, pp. 346–357. Springer, Berlin (2011)

    Chapter  Google Scholar 

  30. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Veelaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Veelaert, P. (2012). Separability and Tight Enclosure of Point Sets. In: Brimkov, V., Barneva, R. (eds) Digital Geometry Algorithms. Lecture Notes in Computational Vision and Biomechanics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4174-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4174-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4173-7

  • Online ISBN: 978-94-007-4174-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics