Skip to main content

Shape from Silhouettes in Discrete Space

  • Chapter
Digital Geometry Algorithms

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 2))

Abstract

Reconstruction of an object from a series of silhouettes is obtained through a binary geometric tomography technique since both the objects and the projections, which are measured as a series of silhouettes, are binary. In this paper, we formulate the method Shape from Silhouettes in two- and in three-dimensional discrete space. This approach to the problem derives an ambiguity theorem for the reconstruction of objects in the discrete space. The theorem shows that Shape from Silhouettes in discrete space results in an object which is over-reconstructed, if the object is convex. Furthermore, we show that in three-dimensional space, it is possible to reconstruct a class of non-convex objects from a set of silhouettes although in the plane a non-convex object is not completely reconstructible from projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The cross-section of the cone l(s), sΩ(s) with the hyperplane s x=d is geometrically defined as the silhouette generated by source s.

References

  1. http://tc18.liris.cnrs.fr/

  2. Aloimonos, J.: Visual shape computation. Proc. IEEE 76, 899–916 (1988)

    Article  Google Scholar 

  3. Boltyanski, V., Martin, H., Soltan, P.S.: Excursions into Combinatorial Geometry. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  4. Chollet, A., Wallet, G., Fuchs, L., Andres, A., Largeteau-Skapin, G.: Ω-Arithmetization: a discrete multi-resolution representation of real functions. In: IWCIA 2009. Lecture Notes in Computer Science, vol. 5852, pp. 316–329 (2009)

    Google Scholar 

  5. Dobkin, D.P., Edelsbrunner, H., Yap, C.K.: Probing convex polytopes. In: Proc. 18th ACM Symposium on Theory of Computing, pp. 424–432 (1986)

    Google Scholar 

  6. Frank, J. (ed.): Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  7. Herman, G.T., Kuba, A. (eds.): Advances in Discrete Tomography and Its Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  8. Herman, G.T., Kuba, A. (eds.): Discrete Tomography: Foundations, Algorithms, and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  9. Imiya, A., Kawamoto, K.: Shape reconstruction from an image sequences. In: Lecture Notes in Computer Science, vol. 2059, pp. 677–686 (2001)

    Google Scholar 

  10. Imiya, A., Kawamoto, K.: Mathematical aspects of shape reconstruction from an image sequence. In: Proc. 1st Intl. Symp. 3D Data Processing Visualization and Transformations, pp. 632–635 (2002)

    Google Scholar 

  11. Jordan, E.K., Kirby, R.M., Silvia, C., Peters, T.: Through a new looking glass: mathematically precise visualization. SIAM News 43(5) (2010). Archive: http://www.siam.org/news/archives.php

  12. Kawamoto, K., Imiya, A.: Detection of spatial points and lines by random sampling and voting process. Pattern Recognit. Lett. 22, 199–207 (2001)

    Article  MATH  Google Scholar 

  13. Kutulakos, K., Seitz, S.M.: A theory of shape by space carving. In: Proceedings of 7th ICCV, vol. 1, pp. 307–314 (1999)

    Google Scholar 

  14. Laurentini, A.: The visual hull concept for silhouette-bases image understanding. IEEE Trans. Pattern Anal. Mach. Intell. 16, 150–163 (1994)

    Article  Google Scholar 

  15. Laurentini, A.: How a 3D shape can be understood from 2D silhouettes. IEEE Trans. Pattern Anal. Mach. Intell. 17, 88–195 (1995)

    Article  Google Scholar 

  16. Li, R.S.-Y.: Reconstruction of polygons from projections. Inf. Process. Lett. 28, 235–240 (1988)

    Article  MATH  Google Scholar 

  17. Lindembaum, M., Bruckstein, A.: Reconstructing a convex polygon from binary perspective projections. Pattern Recognit. 23, 1343–1350 (1990)

    Article  Google Scholar 

  18. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    MATH  Google Scholar 

  19. Plitzko, J.M., Baumeister, W.: Cryoelectron tomography (CET). In: Hawkes, P.W., Spence, J.C.H. (eds.) Science of Microscopy, 2nd edn., pp. 535–604. Springer, Berlin (2006)

    Google Scholar 

  20. Prince, J.L., Willsky, A.S.: Reconstructing convex sets from support line measurements. IEEE Trans. Pattern Anal. Mach. Intell. 12, 377–389 (1990)

    Article  Google Scholar 

  21. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. 69, 262–277 (1917)

    Google Scholar 

  22. Rao, A.S., Goldberg, Y.K.: Shape from diameter: recognizing polygonal parts with parallel-jaw gripper. Int. J. Robot. Res. 13, 16–37 (1994)

    Article  Google Scholar 

  23. Said, M., Lachaud, J.-O., Feschet, F.: Multiscale discrete geometry. In: DGCI 2009. Lecture Notes in Computer Science, vol. 5810, pp. 118–131 (2009)

    Google Scholar 

  24. Said, M., Lachaud, J.-O., Feschet, F.: Multiscale analysis of digital segments by intersection of 2D digital lines. In: Proc. ICPR 2010, pp. 4097–4100 (2010)

    Google Scholar 

  25. Skiena, S.S.: Interactive reconstruction via geometric probing. Proc. IEEE 80, 1364–1383 (1992)

    Article  Google Scholar 

  26. Skiena, S.S.: Probing convex polygon with half-planes. J. Algorithms 12, 359–374 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tuy, H.K.: An inversion formula for cone-beam reconstruction. SIAM J. Appl. Math. 43, 546–552 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the grant “Computational anatomy for computer-aided diagnosis and therapy: Frontiers of medical image sciences” funded by the Grant-in-Aid for Scientific Research on Innovative Areas, MEXT, Japan, the Grants-in-Aid for Scientific Research funded by Japan Society of the Promotion of Sciences, Japan. A part of the research is based on the Master’s thesis of Kosuke Sato submitted to the School of Science and Technology, Chiba University 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Imiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Imiya, A., Sato, K. (2012). Shape from Silhouettes in Discrete Space. In: Brimkov, V., Barneva, R. (eds) Digital Geometry Algorithms. Lecture Notes in Computational Vision and Biomechanics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4174-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4174-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4173-7

  • Online ISBN: 978-94-007-4174-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics