Skip to main content

Non-destructive Proximal Sensing for Early Detection of Citrus Nutrient and Water Stress

  • Chapter
  • First Online:
Advances in Citrus Nutrition

Abstract

This chapter reports the application of non-destructive optical-based technologies for the rapid and efficient assessment of the nutritional status and water stress detection improving their use efficiency. In the proximal sensing section, it was presented the use of spectral and hyperspectral imaging to evaluate the plant nutritional status. Proximal sensing offers the opportunity to rapidly collect a huge amount of crop canopy information. In the infrared thermography and thermometry section, results about their use to assess plant water stress analysing canopy and soil temperature variation were reported. Finally, the use of spectrophotometry and of the chlorophyll meter for the citrus nutrient detection is presented. The analyses of data were carried out by linear regressions and by multivariate statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alchanatis V, Schmilovitch Z, Meron M (2005) In-field assessment of single leaf nitrogen status by spectral reflectance measurements. Precis Agric 6(1):25–39

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D et al (1998) Crop evapotranspiration: guidelines for computing crop water requirements, vol 56, FAO irrigation and drainage paper. Food and Agriculture Organization of the United Nations, Rome, pp 15–27

    Google Scholar 

  • Alva AK, Paramasivam S, Graham WD et al (2003a) Best nitrogen management practices for citrus production in sandy soils. Water Air Soil Pollut 14:139–154

    Article  Google Scholar 

  • Alva AK, Fares A, Dou H (2003b) Managing citrus trees to optimize dry mass and nutrient partitioning. J Plant Nutr 26:1541–1559

    Article  CAS  Google Scholar 

  • Cayuela JA (2008) Vis/NIR soluble solids prediction in intact orange (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biol Technol 47:75–80

    Article  CAS  Google Scholar 

  • Chonè X, Van Leeuwen C, Dubourdieu D et al (2001) Stem water potential is a sensitive indicator of grapevines water status. Ann Bot 87:477–483

    Article  Google Scholar 

  • Costa C, Antonucci F, Pallottino F et al (2011) Shape analysis of agricultural products: a review of recent research advances and potential application to computer vision. Food Bioprocess Technol. doi:10.1007/s11947-011-0556-0

  • Davies FS (1997) Literature review of research related to nitrogen nutrition, fertilization and groundwater pollution of citrus. In: Florida Department of Agriculture and Consumer Services nitrogen BMP Technologies Group, Tallahassee, FL, USA, pp 70

    Google Scholar 

  • Davies FS, Albrigo LG (1994) Citrus. In: Atherton J, Rees A (eds) Crop production sciences in horticulture, vol 2. CAB International, Wallingford

    Google Scholar 

  • Duce P, Arca B, Spano D et al (1997) Uno strumento per la misura non distruttiva del contenuto in clorofilla: applicabilità dello strumento agli agrumi. Italus Hortus 4(4):26–31

    Google Scholar 

  • Embleton TW, Jones WW, Labanauskas CH et al (1973a) Leaf analysis as a diagnostic tool and guide to fertilization. In: Reuther W (ed) The citrus industry, vol 3. University of California, Division of Agricultural Science, Berkeley, pp 183–210

    Google Scholar 

  • Embleton TW, Reitz HJ, Jones WW (1973b) Citrus fertilization. In: Reuther W (ed) The citrus industry, vol 3. University of California, Division Agricultural of Science, Berkeley, pp 122–182

    Google Scholar 

  • Embleton TW, Coggins CW, Witney GW (1996) What is most profitable use of citrus leaf analysis? Proc Int Soc Citric 2:1261–1264

    Google Scholar 

  • Enterline J (2001) Agriculture remote sensing: getting a closer look. Earth Obs Mag 9(2):45–47. ISSN:1076–3430

    Google Scholar 

  • Esposti MDD, Siqueira DLD, Pereira PRG et al (2003) Assessment of nitrogenized nutrition of citrus rootstocks using chlorophyll concentrations in the leaf. J Plant Nutr 26(6):1287–1299

    Article  CAS  Google Scholar 

  • Ferguson JJ, Davies FS, Tucker DPH et al (1995) Fertilizer guidelines. In: Tucker DPH, Alva AK, Jackson LK, Wheaton TA (eds) Nutrition of Florida citrus trees. University of Florida, Gainesville, pp 21–25

    Google Scholar 

  • Forina M (2006) I metodi chemometrici di classificazione: a cosa servono e come sono utilizzati. In: Proceedings of the Nir Italia 2006, Ferrara, 25–26 May 2006

    Google Scholar 

  • Gomez AH, Yong H, Pereira AG (2006) Non-destructive measurement of acidity, soluble solids and firmness of ‘Satsuma’ mandarin using VIS/NIR-spectroscopy techniques. J Food Eng 77:313–319

    Article  CAS  Google Scholar 

  • Hanlon EA, Obreza TA, Alva AK (1995) Tissue plant and analysis. In: Tucker DPH, Alva AK, Jackson LK et al (eds) Nutrition of Florida citrus trees. University of Florida, Gainesville, pp 13–20

    Google Scholar 

  • Hernandez Sanchez N, Lurol S, Roger JM et al (2003) Robustness of models based on NIR spectra for sugar content prediction in apples. J Near Infrared Spectrosc 11:97–107

    Article  Google Scholar 

  • Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol 77:483–485

    Article  PubMed  CAS  Google Scholar 

  • Intrigliolo F, Tittarelli F, Roccuzzo G et al (1998) La fertilizzazione degli agrumi. L’informatore agrario 9:79–84

    Google Scholar 

  • Intrigliolo F, Roccuzzo G, Lacertosa G et al (1999) Agrumi: modalità di campionamento per terreno, foglie, acque d’irrigazione e frutti; valori analitici di riferimento. C.U.E.C.M, Catania

    Google Scholar 

  • Intrigliolo F, Giuffrida A, Calabretta ML et al (2000) SPAD as an indicator of nitrogen status in Citrus. In: Proceeding of the IXth international citrus congress, Orlando, FL, pp 665–667

    Google Scholar 

  • Jayas DS, Paliwal J, Visen NS (2000) Multi-layer neural networks for image analysis of agricultural products. J Agric Eng Res 77(2):119–128

    Article  Google Scholar 

  • Jifon JL, Syvertsen JP, Whaley E (2005) Growth environment and leaf anatomy affect non destructive estimates of chlorophyll and nitrogen in Citrus sp. leaves. J Am Soc Hortic Sci 130(2):152–158

    Google Scholar 

  • Jones HG (2004) Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55:2427–2436

    Article  PubMed  CAS  Google Scholar 

  • Jones HG, Stoll M, Santos T et al (2002) Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine. J Exp Bot 53(378):2249–2260

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann MR (1968) Evaluation of the pressure chamber method for measurement of water stress in citrus. J Am Soc Hortic Sci 93:186–190

    Google Scholar 

  • Koo RCJ (1989) Citrus. In: Plucknett DL, Sprague HB (eds) Detecting mineral nutrient deficiencies in tropical and temperate crops, vol 3, Westview tropical agriculture series. Westview Press, Boulder

    Google Scholar 

  • Koo RCJ, Anderson CA, Stewart I et al (1984) Recommended fertilizers and nutritional sprays for citrus. Fla Agric Exp Stn Bull 536D, pp 30

    Google Scholar 

  • Lee W, Searcy SW, Kataoka T (1999) Assessing nitrogen stress in corn varieties of varying color. ASAE paper no. 993034. ASAE, St. Joseph

    Google Scholar 

  • Legaz-Paredes F, Primo-Millo E (1988) Nòrmas para la fertilizaciòn de los agrios. Generalitat Valenciana, Cons. agricoltura i Pesca, Fullets Divulgaciò 5(88)

    Google Scholar 

  • Leinonen I, Jones HG (2004) Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423–1431

    Article  PubMed  CAS  Google Scholar 

  • Leinonen I, Grantm OM, Tagliavia CPP et al (2006) Estimating stomatal conductance with thermal imagery. Plant Cell Environ 29:1508–1518

    Article  PubMed  CAS  Google Scholar 

  • Maldague X (1994) Non-destructive testing monographs and tracts. In: Maldague X (ed) Infrared methodology and technology, vol 7. Gordon and Breach, New York

    Google Scholar 

  • Massantini F, Masoni A, Mariotti M et al (1992) Influenza della concimazione azotata sulla riflettanza, assorbanza e trasmittanza della foglia a bandiera del frumento tenero (Triticum aestivum L.). Rivista di Agronomia 4:489–497

    Google Scholar 

  • McGlone VA, Fraser DG, Jordan RB et al (2003) Internal quality assessment of mandarin fruit by Vis/NIR spectroscopy. J Near Infrared Spectrosc 11:323–332

    Article  CAS  Google Scholar 

  • Menesatti P, Antonucci F, Pallottino F et al (2010) Estimation of plant nutritional status by VIS-NIR spectrophotometric analysis on orange leaves [Citrus sinensis (L) Osbeck cv Tarocco]. Biosyst Eng 105:448–454

    Article  Google Scholar 

  • Miller WM, Zude-Sasse M (2004) NIR-based sensing to measure soluble solids content of Florida citrus. Appl Eng Agric 20:321–327

    Google Scholar 

  • Monje OA, Bugbee B (1992) Inherent limitations of non destructive chlorophyll meters: a comparison of two types of meters. HortScience 27:69–71

    PubMed  CAS  Google Scholar 

  • Moran R, Porath D (1979) Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant Physiol 65:478–479

    Article  Google Scholar 

  • Naor A (2000) Midday stem water potential as a plant water stress indicator for irrigation scheduling in fruit trees. Acta Hortic 537:447–454

    Google Scholar 

  • Naor A, Peres M (2001) Pressure-increase rate affects the accuracy of stem water potential measurements in deciduous fruit trees using the pressure-chamber technique. J Hortic Sci Biotech 76(6):661–663

    Google Scholar 

  • Obreza TA, Alva AK, Hanlon EA et al (1992) Citrus grove leaf tissue and soil testing: sampling, analysis, and interpretation. Cooperative extension service bulletin SL 115. University of Florida, Gainesville, pp 1–4

    Google Scholar 

  • Piekielek WP, Fox RH, Toth JD et al (1995) Use of a chlorophyll meter at the early dent stage of corn to evaluate nitrogen sufficiency. Agron J 87:403–408

    Article  Google Scholar 

  • Rahkonen J, Jokela H (2003) Infrared radiometry for measuring plant leaf temperature during thermal weed control treatment. Biosyst Eng 86(3):257–266

    Article  Google Scholar 

  • Read JJ, Tarpley L, McKinio JM et al (2002) Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton. J Environ Qual 31:1442–1452

    Article  PubMed  CAS  Google Scholar 

  • Roccuzzo G, Rapisarda P, Giuffrida A et al (2000) l livelli di clorofilla nelle foglie di limone come indicatore dello stato nutrizionale azotato. V Giornate Scientifiche SOI 2:577–578

    Google Scholar 

  • Saranwong S, Sornsrivichai J, Kawano S (2003a) On-tree evaluation of harvesting quality of mango fruit using a hand-held NIR instrument. J Near Infrared Spectrosc 11:283–293

    Article  CAS  Google Scholar 

  • Saranwong S, Sornsrivichai J, Kawano S (2003b) Performance of a portable near infrared instrument for Brix value determination of intact mango fruit. J Near Infrared Spectrosc 11:175–181

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HJ, Bradstreet A et al (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  CAS  Google Scholar 

  • Singha S, Townsend C (1989) Relationship between chromaticity values and chlorophyll concentration in apple grape, and peach leaves. HortScience 24:1034–1038

    Google Scholar 

  • Steuer B, Schulz H, Lager E (2001) Classification and analysis of citrus oils by NIR spectroscopy. Food Chem 72:113–117

    Article  CAS  Google Scholar 

  • Sui R, Wilkerson JB, Hart WE et al (1998) Integration of neural networks with a spectral reflectance sensor to detect nitrogen deficiency in cotton. ASAE paper no. 983104. ASAE, St. Joseph

    Google Scholar 

  • Syvertsen JP, Levy J (1982) Diurnal changes in citrus leaf thickness, leaf water potential and leaf to air temperature difference. J Exp Bot 33:783–789

    Article  Google Scholar 

  • Temma T, Hanamatsu K, Shinoki F (2002) Development of a portable near infrared sugar-measuring instrument. J Near Infrared Spectrosc 10:77–83

    Article  CAS  Google Scholar 

  • Tumbo SD, Wagner DG, Heinenann PH (2002a) Hyperspectral-based neural network for predicting chlorophyll status in corn. Trans ASAE 45:825–832

    Google Scholar 

  • Tumbo SD, Wagner DG, Heinenann PH (2002b) On-the-go sensing of chlorophyll status in corn. Trans ASAE 45:1207–1215

    Google Scholar 

  • Tumbo SD, Wagner DG, Heinenann PH (2002c) Hyperspectral characteristics of corn plants under different chlorophyll levels. Trans ASAE 45:815–823

    Google Scholar 

  • Urbani G, Menesatti P, Solaini S (2002) Tecnologie opto-elettroniche in agricoltura: nuove prospettive e indirizzi di ricerca. Mondo Macchina 6:35–38

    Google Scholar 

  • Ventura M, De Jager A, De Putter FH et al (1998) Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy (NIRS). Postharvest Biol Technol 14:21–27

    Article  Google Scholar 

  • Viscarra Rossel RA, Taylor HJ, McBratney AB (2007) Multivariate calibration of hyper-spectral γ-ray energy spectra for proximal soil sensing. Eur J Soil Sci 58:343–353

    Article  Google Scholar 

  • Williams PC (1987) Variables affecting near-infrared reflectance spectroscopic analysis. In: Williams P, Norris K (eds) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St Paul, pp 143–166

    Google Scholar 

  • Wold S, Sjostrom M, Erikssonn L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  • Wood CW, Tracy PW, Reeves DW et al (1992a) Determination of cotton nitrogen status with a portable chlorophyll meter. J Plant Nutr 15(9):1435–1448

    Article  Google Scholar 

  • Wood CW, Reeves DW, Duffield RR et al (1992b) Field chlorophyll measurements for evaluation of corn nitrogen status. J Plant Nutr 15(4):87–500

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Menesatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Menesatti, P., Pallottino, F., Antonucci, F., Roccuzzo, G., Intrigliolo, F., Costa, C. (2012). Non-destructive Proximal Sensing for Early Detection of Citrus Nutrient and Water Stress. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_9

Download citation

Publish with us

Policies and ethics