Skip to main content

Physiological Responses and Tolerance of Citrus to Aluminum Toxicity

  • Chapter
  • First Online:
Advances in Citrus Nutrition
  • 3029 Accesses

Abstract

Aluminum (Al) toxicity is the major factor limiting plant growth in acidic soils, which comprise up to 50% of the world’s potentially arable lands. Citrus belong to evergreen subtropical fruit trees and are cultivated in humid and subhumid of tropical, subtropical, and temperate regions of the world mainly on acidic soils. Soil acidification is a major problem in citrus plantations. There has been significant progress in our understanding of the physiological responses and the tolerance of citrus to Al toxicity during the past decade. In this chapter, growth, physiological responses (carbohydrates, photosynthesis, water relation, light energy utilization, photoprotective system, mineral nutrients, and organic acids), and tolerance (genotypic differences, Al uptake, and distribution, and Al-induced secretion of organic acid anions) of citrus to Al toxicity are reviewed. The amelioration of phosphorus (P) and boron (B) on citrus Al toxicity as well as some aspects needed to be further studied are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Chen L-S (2006) Physiological responses and tolerance of plant shoot to aluminum toxicity. J Plant Physiol Mol Biol 32:143–155

    Google Scholar 

  • Chen L-S, Qi Y-P, Liu X-H (2005a) Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves. Ann Bot 96:35–41

    Article  PubMed  CAS  Google Scholar 

  • Chen L-S, Qi Y-P et al (2005b) Aluminum-induced decrease in CO2 assimilation in citrus seedlings is unaccompanied by decreased activities of key enzymes involved in CO2 assimilation. Tree Physiol 25:317–324

    Article  PubMed  CAS  Google Scholar 

  • Chen L-S, Tang N et al (2009) Changes in organic acid metabolism differ between roots and leaves of Citrus grandis in response to phosphorus and aluminum interactions. J Plant Physiol 166:2023–2034

    Article  PubMed  CAS  Google Scholar 

  • Chen L-S, Tang N et al (2010) Effects of aluminum on leaf water relation and nutritional elements of citrus seedlings. In: Deng XX, Xu J et al (eds) Proceedings of the international society of citriculture, vol 1. China Agriculture Press, Beijing, pp 650–653

    Google Scholar 

  • Corrales I, Poschenrieder C, Barceló J (2008) Boron-induced amelioration of aluminum toxicity in a monocot and a dicot species. J Plant Physiol 165:504–513

    Article  PubMed  CAS  Google Scholar 

  • de Magalhães AFJ (1987) Tolerância de porta-enxertos de citrus ao alumínio. Rev Bras Frutic 9:51–55

    Google Scholar 

  • Demmig-Adams B, Adams WW III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1:21–26

    Article  Google Scholar 

  • Deng W, Luo K et al (2008) Molecular cloning and characterization of a mitochondrial dicarboxylate/tricarboxylate transporter gene in Citrus junos response to aluminum stress. Mitochondrial DNA 19:376–384

    PubMed  CAS  Google Scholar 

  • Deng W, Luo K et al (2009) Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta 230:355–365

    Article  PubMed  CAS  Google Scholar 

  • dos Santos CH, Filho HG et al (2000) Influence of different levels of aluminum on the development of citrus rootstock ‘Swingle’ citrumelo (Citrus paradisi Mcf. × Poncirus trifoliata Raf.) in nutrient solution. Braz Arch Biol Technol 43:27–33

    Google Scholar 

  • Guo JH, Liu XJ et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  PubMed  CAS  Google Scholar 

  • Jiang H-X, Chen L-S et al (2008) Aluminum-induced effects on photosystem II photochemistry in citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863–1871

    Article  PubMed  CAS  Google Scholar 

  • Jiang H-X, Tang N et al (2009a) Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137:298–311

    Article  PubMed  CAS  Google Scholar 

  • Jiang H-X, Tang N et al (2009b) Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol 9:102

    Article  PubMed  Google Scholar 

  • Jiang H-X, Chen L-S et al (2009c) Effects of aluminum on the growth of young citrus seedlings. Chin Agric Sci Bull 25(4):167–170

    Google Scholar 

  • Kochian LV, Hoekenga OA et al (2004) How do crop plant tolerance acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Piñeros MA et al (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Lin Z, Myhre DL (1990) Citrus root growth as affected by soil aluminum level under field conditions. Soil Sci Soc Am J 54:1340–1344

    Article  CAS  Google Scholar 

  • Lin Z, Myhre DL (1991a) Differential response of citrus rootstocks to aluminum levels in nutrient solutions: I. Plant growth. J Plant Nutr 14:1223–1238

    Article  CAS  Google Scholar 

  • Lin Z, Myhre DL (1991b) Differential response of citrus rootstocks to aluminum levels in nutrient solutions: II. Plant mineral concentrations. J Plant Nutr 14:1239–1254

    Article  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of Al in higher plants. Plant Cell Physiol 41:383–390

    Article  PubMed  CAS  Google Scholar 

  • Ma JF (2007) Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants. Int Rev Cytol 264:225–252

    Article  PubMed  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching, a response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  Google Scholar 

  • Nakagawa TO, Mori S, Yoshimura E (2003) Amelioration of aluminum toxicity by pretreatment with phosphate in aluminum-tolerant rice cultivar. J Plant Nutr 26:619–628

    Article  CAS  Google Scholar 

  • Niyogi KK, Grossmn AR et al (1998) Arabidopsis mutants define a central role of the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    PubMed  CAS  Google Scholar 

  • Pereira WE, de Siqueira DL et al (2000) Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminum stress. J Plant Physiol 157:513–520

    Article  CAS  Google Scholar 

  • Pereira WE, de Siqueira DL et al (2003) Growth of citrus rootstocks under aluminium stress in hydroponics. Sci Agric 60:31–41

    Article  CAS  Google Scholar 

  • Roy AK, Sharma A, Talukder G (1988) Some aspects of aluminum toxicity in plants. Bot Rev 54:145–178

    Article  Google Scholar 

  • Strasser RJ, Srivastava A et al (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Sun QB, Shen RF et al (2008) Phosphorus enhances Al resistance in Al-resistant Lespedeza bicolor but not in Al-sensitive L. cuneata under relatively high Al stress. Ann Bot 102:795–804

    Article  PubMed  CAS  Google Scholar 

  • Tan K, Keltjens WG (1990a) Interaction between aluminum and phosphorus in sorghum plants. I. Studies with the aluminum sensitive sorghum genotype TAM428. Plant Soil 124:15–23

    Article  CAS  Google Scholar 

  • Tan K, Keltjens WG (1990b) Interaction between aluminum and phosphorus in sorghum plants. II. Studies with the aluminum tolerant sorghum genotype SC0283. Plant Soil 124:25–32

    Article  CAS  Google Scholar 

  • Tardy F, Havaux M (1997) Thylakoid membrane fluidity and thermostability during the operation of the xanthophyll cycle in higher-plant chloroplasts. Biochim Biophys Acta 1330:179–193

    Article  PubMed  CAS  Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response: the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93

    CAS  Google Scholar 

  • Yang L-T, Jiang H-X et al (2011) Mechanisms of aluminum-tolerance in two species of citrus: secretion of organic acid anions and immobilization of aluminum by phosphorus in roots. Plant Sci 180:521–530

    Article  PubMed  CAS  Google Scholar 

  • Yokomizo H, Ishihara M (1973) Studies on the mineral nutrition of fruit trees by sand and water culture. I. Effects of composition of nutrient solution on the growth of Satsuma mandarin trees. Kaju Shikenjo Hokoku A 12:29–77

    Google Scholar 

  • Zhang M, Luo X-Y et al (2008) Characterization of malate dehydrogenase gene from Citrus junos and its transgenic tobacco’s tolerance to aluminium toxicity. Acta Hortic Sin 35:1751–1758

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the National Natural Science Foundation of China (Nos. 30270930; 30771487), the Agricultural Commonweal Industrial Special Fund Program of Department of Agriculture, China (No. nyhyzx07-023), the Natural Science Foundation of Fujian Province of China (No. B0710011), and the earmarked fund for China Agriculture Research System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Song Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chen, LS. (2012). Physiological Responses and Tolerance of Citrus to Aluminum Toxicity. In: Srivastava, A. (eds) Advances in Citrus Nutrition. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4171-3_29

Download citation

Publish with us

Policies and ethics