Skip to main content

Climate Change Mitigation by Managing the Terrestrial Biosphere

  • Chapter
  • First Online:
Recarbonization of the Biosphere

Abstract

The terrestrial C pool, 3,900 Pg comprising of C in soil and the vegetation, is the third largest after the oceanic and the geological pools. Rather than with the on-set of the Industrial Revolution around 1800 AD, the Anthropocene may have commenced 10–12 millennia ago with the dawn of settled agriculture. Given this hypothesis, the terrestrial biosphere may have lost as much as 480 Pg C, of which 70–100 Pg may have been depleted from the world’s soils. Whereas most of the C emitted from the terrestrial biosphere may have been reabsorbed by the ocean and the land-based sinks, the depleted C pool created a C sink capacity that can be refilled through conversion to judicious land use(s) and adoption of recommended management practices of soil, vegetation and domesticated animals. Principal biomes for C sequestration, those with high capacity for C sequestration/emission avoidance and with numerous co-benefits, are peatlands and wetlands, degraded soils and desertified ecosystems, soils of agroecosystems and urban lands. Effective erosion control can also avoid emissions exacerbated by mineralization of C ­transported in runoff and eroded sediments and redistributed over the landscape. In addition to mitigating climate change, other co-benefits of C sequestration in the terrestrial biosphere are advancing food security, improving quality and quantity of water resources, and increasing the habitat and total biodiversity. Being an engine of economic development, improvements in productivity of agricultural, forestry and other managed ecosystems can advance the Millennium Development Goals, promote political and social stability, and improve standards of living. This is a win-win option in the context of climatic, environmental, political, economic and social issues facing the Carbon Civilization of the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

abrupt climate change

ADAM:

adapting and mitigating

CCS:

carbon capture and storage

CRP:

conservation reserve program

Eg 1018 g:

exagram

GCC:

global carbon cycle

GSF:

Global Soil Forum

GHGs:

greenhouse gases

HCC:

hidden C cost

MRT:

mean residence time

NPP:

net primary productivity

NIMBY:

not in my backyard

SIC:

soil inorganic C

SOC:

soil organic C

SOM:

soil organic matter

References

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358. doi:10.1007/BF00052709

    Article  CAS  Google Scholar 

  • Bai ZG, Dent DL, Olsson L et al (2008) Proxy global assessment of land degradation. Soil Use Manage 24:223–234

    Article  Google Scholar 

  • Batjes NH (1996) Total carbon and nitrogen in soils of the world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Canadell JG, Pataki D, Gifford R et al (2007) Saturation of the terrestrial C sinks; Chapter 6. In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial ecosystems in a changing world, The IGBP series. Springer, Berlin

    Chapter  Google Scholar 

  • Crutzen PI, Stoermer EF (2000) The “anthropocene”. IGBP Newsl 41:12

    Google Scholar 

  • Ellis EC, Goldewijk KK, Siebert S et al (2010) Anthropogenic transformation of the biomes: 1700 to 2000. Global Ecol Biogeogr 19:589–606

    Google Scholar 

  • Eswaran H, Van den Berg E, Reich P (1993) Organic carbon in soils of the world. J Soil Sci Soc Am 57:192–194

    Article  Google Scholar 

  • Eswaran H, Van den Berg E, Reich P et al (1995) Global soil carbon resources. In: Lal R, Kimble JM, Levine ES, Stewart BA (eds) Soil and global change. CRC/Lewis Publishers, Boca Ratan, pp 27–43

    Google Scholar 

  • Eswaran H, Reich PF, Kimble JM et al (2000) Global soil carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. Lewis Publishers, Boca Raton, pp 15–25

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195. doi:10.2307/1941811

    Article  Google Scholar 

  • Gorham E (1995) The biogeo chemistry of northern peatlands and its possible responses to global warming. In: Woodwell GM, MacKenzie FT (eds) Biotic feedbacks in the global climatic system. Oxford University Press, New York, pp 169–187

    Google Scholar 

  • Hansen J, Sato M, Kharecha P et al (2008) Target atmospheric CO2: where should humanity aim? Open Atmos Sci 2:217–231

    Article  CAS  Google Scholar 

  • Holdren JP (2008) Meeting the climate change challenge. 8th Annual John H. Chaffe Memorial Lecture, 17 January 2008, Ronald Regan Bld, Washington, D.C.

    Article  CAS  Google Scholar 

  • Houghton RA (2007) Balancing the global carbon budget. Annu Rev Earth Planet Sci 35:313–347

    Article  CAS  Google Scholar 

  • IGBPC (International Geosphere-Biosphere Program – Data Information Service) (1999) Soil carbon layer. Royal Swedish Academy of Sciences, Stockholm, Sweden

    Google Scholar 

  • Jobbagy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kaat A, Joosten H (2008) Fact book for UNFCCC policies on peat carbon emissions. Wetlands Intl., Ede, the Netherlands

    Google Scholar 

  • Kazmin A (2011) India’s megacities: a case of rise and sprawl. Financial Times 8 November 2011, World News, p 8

    Google Scholar 

  • Lähteenoja O, Roukolainen K, Schulman L et al (2009) Amazonian peatlands: an ignored C sink and potential source. Global Change Biol 15:2311–2320. doi:10.1111/j.1365-2486.2009.01920.x

    Article  Google Scholar 

  • Laine J, Minkkinen K, Trettin C (2009) Direct human impacts on the peatland carbon sink. Geophys Mono Series 184, Am Geophys Union. doi: 10.1029/2008GM000808

  • Lal R (1999) Soil management and restoration for C sequestration to mitigate the greenhouse effect. Prog Environ Sci 1:3070326

    Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2010a) Managing soils and ecosystems for mitigating anthropogenic carbon emissions and advancing global food security. Bioscience 60:708–721

    Article  Google Scholar 

  • Lal R (2010b) Beyond Copenhagen: mitigating climate change and achieving food security through soil C sequestration. Food Secur 2:169–177

    Article  Google Scholar 

  • Lal R (2011) Harnessing science knowledge for combating desertification, land degradation and drought. Key note lecture, 10th session of COP to UNCCD, 17–18 October 2011, Changwan, Korea

    Google Scholar 

  • Lal R, Augustin B (eds) (2012) Carbon sequestration in urban ecosystems. Springer, Dordrecht Holland, p 385

    Google Scholar 

  • Le Quéré C (2010) Trends in the land and ocean carbon uptake. Curr Opin Environ Sustain 2:219–224

    Article  Google Scholar 

  • Le Quéré C, Canadell JG, Ciais P et al (2010) An international carbon office to assist policy-based science. Curr Opion Environ Sustain 2:297–300

    Article  Google Scholar 

  • Lele U (2010) Food security for a billion poor. Science 326:1554

    Article  Google Scholar 

  • Maltby E, Immirzi CP (1993) Carbon dynamics in peatlands and other wetlands soils: regional and global perspectives. Chemosphere 27:999–1023

    Article  CAS  Google Scholar 

  • McKinsey & Co (2009) Pathways to a low carbon economy. Version 2. Global greenhouse gas abatement cost curve. McKinsey & Co, New York

    Google Scholar 

  • Olofsson J, Hickler T (2008) Effects of human land-use on the global carbon cycle during the last 6000 years. Veg Hist Archaeobot 17:605–615

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecosystems of the world. A new map of life on earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Pierrhumbert R (2011) Infra red radiation and planetary temperatures. Physics Today, January 2011, pp 48–53

    Google Scholar 

  • Ramankutty N, Foley JA (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027

    Article  CAS  Google Scholar 

  • Reardon S (2011) Climate change sparks battle in classrooms. Science 333:688–689

    Article  PubMed  CAS  Google Scholar 

  • Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Chang 61:261–293

    Article  CAS  Google Scholar 

  • Ruddiman WF (2007) The early anthropogenic hypothesis: challenges and responses. Rev Geophys 45:2006 RG000207R

    Google Scholar 

  • Ruddiman WF, Ellis EC (2009) Effect of per capita land use changes on Holocene forest clearance and CO2 emissions. Quaternary Sci Rev 28:3011–3015

    Article  Google Scholar 

  • Sherwood S (2011) Science controversies: past and present. Physics Today, October 2011, pp 39–56

    Google Scholar 

  • Somerville RC, Hassol SJ (2011) Communicating the science of climate change. Physics Today, October 2011, pp 48–53

    Google Scholar 

  • Strahler AN, Strahler AH (1984) Elements of physical geography. Wiley, New York

    Google Scholar 

  • Tanneberger F, Wichtmann W (eds) (2011) Carbon credits from peatland rewetting, climate, diversity, land use, science, policy, implementation, and recommendations of a pilot project in Belarus. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  • Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost regions. Global Biogeochem Cycles 23. doi:10.1029/2008GB0033277

  • Van Oost K, Quine TA, Glovers G et al (2007) The impact of agricultural soil erosion in the global carbon cycle. Science 318:626–629

    Article  PubMed  Google Scholar 

  • WBGU (Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen) (1988) Die Anrechnung biologischer Quellen und Senken im Kyoto-Protokoll: Fortschritt oder Rückschlang für den globalen Umweltschutz. Sondergutachten 1988. Bremerhaven, Germany

    Google Scholar 

  • Wetland Intl (2009) Wetlands, for water and life: peatlands and CO2 emission. Wageningen, the Netherlands

    Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. Macmillan, New York

    Google Scholar 

  • Wild A (2003) Soils, land and food, managing the land during 21st century. Cambridge University Press, Cambridge

    Google Scholar 

  • Yu Z, Beilman DW, Frolking S et al (2011) Peatlands and their role in the global carbon cycle. EOS 92(12):97–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rattan Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lal, R. (2012). Climate Change Mitigation by Managing the Terrestrial Biosphere. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Recarbonization of the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4159-1_2

Download citation

Publish with us

Policies and ethics