Advertisement

Positioning Control

Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

In an electron microscope positioning a sample with respect to the electron beam is performed by a motorized stage or by electromagnetic beam deflectors. At nano-scale many non-linear motion effects occur in the stage, of which the most obvious and annoying effect for an operator is the stick-slip effect. This chapter describes a novel and generic method that uses an optimized control system to provide good results in compensating for this effect. A second disturbing effect is the position drift, i.e. the slow movement of a sample relative to the electron beam. This chapter shows the results of our on-line control approach to compensate for position drift using the two positioning mechanisms. High frequency magnetic and mechanical disturbances that irrecoverably blur the image have to be dealt with in a different way. This chapter also describes an innovative approach to eliminate the adverse effects on the image by fast scanning combined with advanced image processing techniques.

Keywords

Position drift Electron microscopy Friction compensation Stick-slip Drift correction Control framework Model-based predictive control Hierarchical control Magnetic disturbance Mechanical disturbance  

References

  1. 1.
    R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach (IEEE Press, NY, 2001)CrossRefGoogle Scholar
  2. 2.
    J. Schoukens, J. Lataire, R. Pintelon, G. Vandersteen, T. Dobrowiecki, Robustness issues of the best linear approximation of a nonlinear system. IEEE Trans. Instrum. Meas. 58, 1737–1745 (2009). doi: 10.1109/TIM.2009.2012948 CrossRefGoogle Scholar
  3. 3.
    D.J. Rijlaarsdam, P.W.J.M. Nuij, J. Schoukens, M. Steinbuch, Spectral analysis of block structured nonlinear systems and higher order sinusoidal input describing functions. Automatica 47(12), 2684–2688 (2011). doi: 10.1016/j.automatica.2011.08.049 MATHCrossRefGoogle Scholar
  4. 4.
    D.J. Rijlaarsdam, P.W.J.M. Nuij, J. Schoukens, M. Steinbuch, Frequency domain based friction compensation, industrial application to transmission electron microscopes, in Proceedings of American Control Conference, pp. 4093–4098 (2011)Google Scholar
  5. 5.
    D.J. Rijlaarsdam, P.W.J.M. Nuij, J. Schoukens, M. Steinbuch, Frequency domain based nonlinear feed forward control design for friction compensation. Mech. Syst. Signal Process. 27, 551–562 (2012). doi: 10.1016/j.ymssp.2011.08.008 ADSCrossRefGoogle Scholar
  6. 6.
    P.W.J.M. Nuij, O.H. Bosgra, M. Steinbuch, Higher-order sinusoidal input describing functions for the analysis of non-linear systems with harmonic responses. Mech. Syst. Signal Process. 20, 1883–1904 (2006). doi: 10.1016/j.ymssp.2005.04.006 ADSCrossRefGoogle Scholar
  7. 7.
    D.J. Rijlaarsdam, V. Van Geffen, P.W.J.M. Nuij, J. Schoukens, M. Steinbuch, Frequency domain based feed forward tuning for friction compensation, in ASPE Spring Topical Meeting, pp. 129–134 (2010) Google Scholar
  8. 8.
    R.C. Gonzalez, R.E. Woods, Digital Image Processing (Addison-Wesley, Boston, 1992)Google Scholar
  9. 9.
    B.S. Salmons, D.R. Katz, M.L. Trawick, Correction of distortion due to thermal drift in scanning probe microscopy. Ultramicroscopy 1(3), 339–349 (2010)CrossRefGoogle Scholar
  10. 10.
    M.A. Sutton, J.J. Orteu, H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications (Springer-Verlag, NY, 2009)Google Scholar
  11. 11.
    M.A. O’Keefe, B. Parvin, D. Owen, J. Taylor, K.H. Westmacott, W. Johnston, U. Dahmen, Automation for on-line remote-control in situ electron microscopy. Scanning Microsc. 11, 229–239 (1997)Google Scholar
  12. 12.
    A.N. Tarău, P.W.J.M. Nuij, J. Schoukens, M. Steinbuch, Hierarchical control for drift correction in transmission electron microscopes, in Proceedings of the 19th IEEE International Conference on Control Applications, (2011) pp. 351–356. doi:  10.1109/CCA.2011.6044492
  13. 13.
    A.N. Tarău, P.W.J.M. Nuij, M. Steinbuch, Model-based drift control for electron microscopes, in Proceedings of the 18th IFAC World Congress, (2011), pp. 8583–8588. doi:  10.3182/20110828-6-IT-1002.02190
  14. 14.
    S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis And Design (Wiley, Chichester, 2005)Google Scholar
  15. 15.
    D.J. Rijlaarsdam, P.W.J.M. Nuij, J. Schoukens, M. Steinbuch, Frequency domain based nonlinear feed forward control design for friction compensation. Mech. Syst. Signal Process. 27, 551–562 (2012). doi: 10.1016/j.ymssp.2011.08.008 ADSCrossRefGoogle Scholar
  16. 16.
    J.B. Rawlings, D.Q. Mayne, Model Predictive Control: Theory and Design (Nob Hill Publishing, Madison, 2009)Google Scholar
  17. 17.
    P.M. Pardalos, M.G.C. Resende, Handbook of Applied Optimization (Oxford University Press, Oxford, 2002)MATHGoogle Scholar
  18. 18.
    D. Rijlaarsdam, B. Van Loon, P. Nuij, M. Steinbuch, Nonlinearities in industrial motion stages–detection and classification, in Proceedings of the American Control Conference, pp. 6644–6649Google Scholar
  19. 19.
    A.N. Tarău, P.W.J.M. Nuij, M. Steinbuch, Practical approach towards drift correction in electron microscopes, in Technical Report, Control Systems Technology (Eindhoven University of Technology, 2011)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Research FellowEmbedded Systems InstituteEindhovenThe Netherlands
  2. 2.Senior Research FellowEmbedded Systems InstituteEindhovenThe Netherlands

Personalised recommendations